Skip to main content

Using Molecular Simulation to Guide Protein Engineering for Biocatalysis in Organic Solvents

  • Protocol
  • First Online:
Enzyme Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2397))

Abstract

Biocatalysis in organic solvents (OSs) is very appealing for the industry in producing bulk and/or fine chemicals, such as pharmaceuticals, biodiesel, and fragrances. The poor performance of enzymes in OSs (e.g., reduced activity, insufficient stability, and deactivation) negates OSs’ excellent solvent properties. Molecular dynamics (MD) simulations provide a complementary method to study the relationship between enzymes dynamics and the stability in OSs. Here we describe computational procedure for MD simulation of enzymes in OSs with an example of Bacillus subtilis lipase A (BSLA) in dimethyl sulfoxide (DMSO) cosolvent with software GROMACS. We discuss main essential practical issues considered (such as choice of force field, parameterization, simulation setup, and trajectory analysis). The core part of this protocol (enzyme-OS system setup, analysis of structural-based and solvation-based observables) is transferable to other enzymes and any OS systems. Combining with experimental studies, the obtained molecular knowledge is most likely to guide researchers to access rational protein engineering approaches to tailor OS resistant enzymes and expand the scope of biocatalysis in OS media. Finally, we discuss potential solutions to overcome the remaining challenges of computational biocatalysis in OSs and briefly draw future directions for further improvement in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hudson EP, Eppler RK, Clark DS (2005) Biocatalysis in semi-aqueous and nearly anhydrous conditions. Curr Opin Biotechnol 16(6):637–643

    CAS  PubMed  Google Scholar 

  2. Kaul P, Asano Y (2012) Strategies for discovery and improvement of enzyme function: state of the art and opportunities. Microb Biotechnol 5(1):18–33

    CAS  PubMed  Google Scholar 

  3. Polizzi KM, Bommarius AS, Broering JM, Chaparro-Riggers JF (2007) Stability of biocatalysts. Curr Opin Chem Biol 11(2):220–225

    CAS  PubMed  Google Scholar 

  4. Carrea G, Riva S (2000) Properties and synthetic applications of enzymes in organic solvents. Angew Chem Int Ed 39(13):2226–2254

    CAS  Google Scholar 

  5. Gupta MN (1992) Enzyme function in organic solvents. Eur J Biochem 203(1-2):25–32

    CAS  PubMed  Google Scholar 

  6. Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409(6817):241

    CAS  PubMed  Google Scholar 

  7. Arnold FH (1993) Engineering proteins for nonnatural environments. FASEB J 7(9):744–749

    CAS  PubMed  Google Scholar 

  8. Castro GR, Knubovets T (2003) Homogeneous biocatalysis in organic solvents and water-organic mixtures. Crit Rev Biotechnol 23(3):195–231

    CAS  PubMed  Google Scholar 

  9. Gorman LAS, Dordick JS (1992) Organic solvents strip water off enzymes. Biotechnol Bioeng 39(4):392–397

    CAS  PubMed  Google Scholar 

  10. Lombard C, Saulnier J, Wallach J (2005) Recent trends in protease-catalyzed peptide synthesis. Protein Pept Lett 12(7):621–629

    CAS  PubMed  Google Scholar 

  11. Wang S, Meng X, Zhou H, Liu Y, Secundo F, Liu Y (2016) Enzyme stability and activity in non-aqueous reaction systems: a mini review. Catalysts 6(2):32

    Google Scholar 

  12. Boutet S, Lomb L, Williams GJ, Barends TR, Aquila A, Doak RB, Weierstall U, DePonte DP, Steinbrener J, Shoeman RL (2012) High-resolution protein structure determination by serial femtosecond crystallography. Science 337(6092):362–364

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Svergun DI, Petoukhov MV, Koch MH (2001) Determination of domain structure of proteins from X-ray solution scattering. Biophys J 80(6):2946–2953

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Greenfield NJ (2006) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1(6):2876

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hazy E, Bokor M, Kalmar L, Gelencser A, Kamasa P, Han K-H, Tompa K, Tompa P (2011) Distinct hydration properties of wild-type and familial point mutant A53T of α-synuclein associated with Parkinson’s disease. Biophys J 101(9):2260–2266

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee CS, Ru MT, Haake M, Dordick JS, Reimer JA, Clark DS (1998) Multinuclear NMR study of enzyme hydration in an organic solvent. Biotechnol Bioeng 57(6):686–693

    CAS  PubMed  Google Scholar 

  17. Nordwald EM, Armstrong GS, Kaar JL (2014) NMR-guided rational engineering of an ionic-liquid-tolerant lipase. ACS Catalysis 4(11):4057–4064. https://doi.org/10.1021/cs500978x

    Article  CAS  Google Scholar 

  18. Singh PK, Kumbhakar M, Pal H, Nath S (2009) Ultrafast torsional dynamics of protein binding dye thioflavin-T in nanoconfined water pool. J Phys Chem B 113(25):8532–8538

    CAS  PubMed  Google Scholar 

  19. Zhang L, Wang L, Kao Y, Qiu W, Yang Y, Okobiah O, Zhong D (2007) Mapping hydration dynamics around a protein surface. Proc Natl Acad Sci U S A 104(47):18461–18466

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Fioroni M, Diaz MD, Burger K, Berger S (2002) Solvation phenomena of a tetrapeptide in water/trifluoroethanol and water/ethanol mixtures: a diffusion NMR, intermolecular NOE, and molecular dynamics study. J Am Chem Soc 124(26):7737–7744

    CAS  PubMed  Google Scholar 

  21. Maeda Y (2001) IR spectroscopic study on the hydration and the phase transition of poly(vinyl methyl ether) in water. Langmuir 17(5):1737–1742

    CAS  Google Scholar 

  22. Abel S, Galamba N, Karakas E, Marchi M, Thompson WH, Laage D (2016) On the structural and dynamical properties of DOPC reverse micelles. Langmuir 32(41):10610–10620

    CAS  PubMed  Google Scholar 

  23. Dahanayake JN, Mitchell-Koch KR (2018) How does solvation layer mobility affect protein structural dynamics? Front Mol Biosci 5:65

    PubMed  PubMed Central  Google Scholar 

  24. Dielmann-Gessner J, Grossman M, Nibali VC, Born B, Solomonov I, Fields GB, Havenith M, Sagi I (2014) Enzymatic turnover of macromolecules generates long-lasting protein–water-coupled motions beyond reaction steady state. Proc Natl Acad Sci U S A 111(50):17857–17862

    CAS  PubMed  PubMed Central  Google Scholar 

  25. George DK, Charkhesht A, Hull OA, Mishra A, Capelluto DG, Mitchell-Koch KR, Vinh NQ (2016) New insights into the dynamics of zwitterionic micelles and their hydration waters by gigahertz-to-terahertz dielectric spectroscopy. J Phys Chem B 120(41):10757–10767

    CAS  PubMed  Google Scholar 

  26. King JT, Kubarych KJ (2012) Site-specific coupling of hydration water and protein flexibility studied in solution with ultrafast 2D-IR spectroscopy. J Am Chem Soc 134(45):18705–18712

    CAS  PubMed  Google Scholar 

  27. Dutta Banik S, Nordblad M, Woodley JM, Peters GH (2016) A correlation between the activity of Candida antarctica lipase B and differences in binding free energies of organic solvent and substrate. ACS Catalysis 6(10):6350–6361

    CAS  Google Scholar 

  28. Stepankova V, Bidmanova S, Koudelakova T, Prokop Z, Chaloupkova R, Damborsky J (2013) Strategies for stabilization of enzymes in organic solvents. ACS Catalysis 3(12):2823–2836

    CAS  Google Scholar 

  29. Watanabe K, Yoshida T, Ueji S (2004) The role of conformational flexibility of enzymes in the discrimination between amino acid and ester substrates for the subtilisin-catalyzed reaction in organic solvents. Bioorg Chem 32(6):504–515

    CAS  PubMed  Google Scholar 

  30. Yaacob N, Ahmad Kamarudin NH, Leow ATC, Salleh AB, Raja Abd Rahman RNZ, Mohamad Ali MS (2017) The role of solvent-accessible Leu-208 of cold-active Pseudomonas fluorescens strain AMS8 lipase in interfacial activation, substrate accessibility and low-molecular weight esterification in the presence of toluene. Molecules 22(8):1312

    Google Scholar 

  31. Chaudhary AK, Kamat SV, Beckman EJ, Nurok D, Kleyle RM, Hajdu P, Russell AJ (1996) Control of subtilisin substrate specificity by solvent engineering in organic solvents and supercritical fluoroform. J Am Chem Soc 118(51):12891–12901

    CAS  Google Scholar 

  32. Klibanov AM (1997) Why are enzymes less active in organic solvents than in water? Trends Biotechnol 15(3):97–101

    CAS  PubMed  Google Scholar 

  33. Serdakowski AL, Dordick JS (2008) Enzyme activation for organic solvents made easy. Trends Biotechnol 26(1):48–54

    CAS  PubMed  Google Scholar 

  34. Valivety RH, Halling PJ, Peilow AD, Macrae AR (1992) Lipases from different sources vary widely in dependence of catalytic activity on water activity. BBA-Protein Struct M 1122(2):143–146

    CAS  Google Scholar 

  35. Wangikar PP, Michels PC, Clark DS, Dordick JS (1997) Structure and function of subtilisin BPN solubilized in organic solvents. J Am Chem Soc 119(1):70–76

    CAS  Google Scholar 

  36. Bovara R, Carrea G, Ottolina G, Riva S (1993) Effects of water activity on Vmax and Km of lipase catalyzed transesterification in organic media. Biotechnol Lett 15(9):937–942

    CAS  Google Scholar 

  37. Foresti ML, Galle M, Ferreira ML, Briand LE (2009) Enantioselective esterification of ibuprofen with ethanol as reactant and solvent catalyzed by immobilized lipase: experimental and molecular modeling aspects. J Chem Technol Biotechnol 84(10):1461–1473

    CAS  Google Scholar 

  38. Graber M, Irague R, Rosenfeld E, Lamare S, Franson L, Hult K (2007) Solvent as a competitive inhibitor for Candida antarctica lipase B. BBA-Protein Struct M 1774(8):1052–1057

    CAS  Google Scholar 

  39. Valivety RH, Halling PJ, Macrae AR (1993) Water as a competitive inhibitor of lipase-catalysed esterification in organic media. Biotechnol Lett 15(11):1133–1138

    CAS  Google Scholar 

  40. Doukyu N, Ogino H (2010) Organic solvent-tolerant enzymes. Biochem Eng J 48(3):270–282

    CAS  Google Scholar 

  41. Kim AS, Kakalis LT, Abdul-Manan N, Liu GA, Rosen MK (2000) Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome protein. Nature 404(6774):151–158

    CAS  PubMed  Google Scholar 

  42. Xu Z, Affleck R, Wangikar P, Suzawa V, Dordick JS, Clark DS (1994) Transition state stabilization of subtilisins in organic media. Biotechnol Bioeng 43(6):515–520

    CAS  PubMed  Google Scholar 

  43. Bellissent-Funel M, Hassanali A, Havenith M, Henchman R, Pohl P, Sterpone F, van der Spoel D, Xu Y, Garcia AE (2016) Water determines the structure and dynamics of proteins. Chem Rev 116(13):7673–7697

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Micaelo NM, Soares CM (2007) Modeling hydration mechanisms of enzymes in nonpolar and polar organic solvents. FEBS J 274(9):2424–2436

    CAS  PubMed  Google Scholar 

  45. Wedberg R, Abildskov J, Peters GH (2012) Protein dynamics in organic media at varying water activity studied by molecular dynamics simulation. J Phys Chem B 116(8):2575–2585. https://doi.org/10.1021/jp211054u

    Article  CAS  PubMed  Google Scholar 

  46. Ducret A, Trani M, Lortie R (1998) Lipase-catalyzed enantioselective esterification of ibuprofen in organic solvents under controlled water activity. Enzyme Microb Technol 22(4):212–216

    CAS  Google Scholar 

  47. Kamal MZ, Yedavalli P, Deshmukh MV, Rao NM (2013) Lipase in aqueous-polar organic solvents: activity, structure, and stability. Protein Sci 22(7):904–915

    CAS  PubMed  PubMed Central  Google Scholar 

  48. van Pouderoyen G, Eggert T, Jaeger KE, Dijkstra BW (2001) The crystal structure of Bacillus subtilis lipase: a minimal α/β hydrolase fold enzyme. J Mol Biol 309(1):215–226

    PubMed  Google Scholar 

  49. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1:19–25

    Google Scholar 

  50. Trodler P, Pleiss J (2008) Modeling structure and flexibility of Candida antarctica lipase B in organic solvents. BMC Struct Biol 8(1):9

    PubMed  PubMed Central  Google Scholar 

  51. Zhang Y, Zhang Y, McCready MJ, Maginn EJ (2018) Evaluation and refinement of the general AMBER force field for nineteen pure organic electrolyte solvents. J Chem Eng Data 63(9):3488–3502

    CAS  Google Scholar 

  52. Dahanayake JN, Gautam DN, Verma R, Mitchell-Koch KR (2016) To keep or not to keep? The question of crystallographic waters for enzyme simulations in organic solvent. Mol Simul 42(12):1001–1013

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Mohtashami M, Fooladi J, Haddad-Mashadrizeh A, Housaindokht MR, Monhemi H (2019) Molecular mechanism of enzyme tolerance against organic solvents: insights from molecular dynamics simulation. Int J Biol Macromol 122:914–923

    CAS  PubMed  Google Scholar 

  54. Cui H, Stadtmüller THJ, Jiang Q, Jaeger K-E, Schwaneberg U, Davari MD (2020c) How to engineer organic solvent resistant enzymes: insights from combined molecular dynamics and directed evolution study. ChemCatChem 12:4073

    CAS  Google Scholar 

  55. Cui H, Zhang L, Eltoukhy L, Jiang Q, Korkunç SK, Jaeger K-E, Schwaneberg U, Davari MD (2020d) Enzyme hydration determines resistance in organic cosolvents. ACS Catalysis 10:14847–14856

    CAS  Google Scholar 

  56. Duarte AM, van Mierlo CP, Hemminga MA (2008) Molecular dynamics study of the solvation of an α-helical transmembrane peptide by DMSO. J Phys Chem B 112(29):8664–8671

    CAS  PubMed  Google Scholar 

  57. Vymětal J, Bednárová L, Vondrášek J (2016) Effect of TFE on the helical content of AK17 and HAL-1 peptides: theoretical insights into the mechanism of helix stabilization. J Phys Chem B 120(6):1048–1059

    PubMed  Google Scholar 

  58. Schmid N, Eichenberger AP, Choutko A, Riniker S, Winger M, Mark AE, van Gunsteren WF (2011) Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur Biophys J 40(7):843–856

    CAS  PubMed  Google Scholar 

  59. Lei Y, Li H, Han S (2003) An all-atom simulation study on intermolecular interaction of DMSO–water system. Chem Phys Lett 380(5-6):542–548

    CAS  Google Scholar 

  60. Liu H, Mueller-Plathe F, van Gunsteren WF (1995) A force field for liquid dimethyl sulfoxide and physical properties of liquid dimethyl sulfoxide calculated using molecular dynamics simulation. J Am Chem Soc 117(15):4363–4366

    CAS  Google Scholar 

  61. Zhang H, Jiang Y, Cui Z, Yin C (2018) Force field benchmark of amino acids. 2. Partition coefficients between water and organic solvents. J Chem Inf Model 58(8):1669–1681

    CAS  PubMed  Google Scholar 

  62. Caleman C, van Maaren PJ, Hong M, Hub JS, Costa LT, van der Spoel D (2012) Force field benchmark of organic liquids: density, enthalpy of vaporization, heat capacities, surface tension, isothermal compressibility, volumetric expansion coefficient, and dielectric constant. J Chem Theory Comput 8(1):61–74

    CAS  PubMed  Google Scholar 

  63. Dick TJ, Madura JD (2005) A review of the TIP4p, TIP4p-ew, TIP5p, and TIP5p-e water models. Annu Rep Comput Chem 1:59–74

    CAS  Google Scholar 

  64. Glättli A, Oostenbrink C, Daura X, Geerke DP, Yu H, Van Gunsteren WF (2004) On the transferability of the SPC/L water model to biomolecular simulation. Braz J Phys 34(1):116–125

    Google Scholar 

  65. Malde AK, Zuo L, Breeze M, Stroet M, Poger D, Nair PC, Oostenbrink C, Mark AE (2011) An automated force field topology builder (ATB) and repository: version 1.0. J Chem Theory Comput 7(12):4026–4037

    CAS  PubMed  Google Scholar 

  66. Wang J, Wang W, Kollman PA, Case DA (2001) Antechamber: an accessory software package for molecular mechanical calculations. J Am Chem Soc 222:U403

    Google Scholar 

  67. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718

    Google Scholar 

  68. Case DA, Darden T, Cheatham III TE, Simmerling C, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M (2006) AMBER 9. University of California, San Francisco 45

    Google Scholar 

  69. Case DA, Darden TA, Cheatham TE, Simmerling CL, Wang J, Duke RE, Luo R, Crowley M, Walker RC, Zhang W (2008) Amber 10. University of California

    Google Scholar 

  70. Brooks BR, Brooks CL III, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30(10):1545–1614

    CAS  PubMed  PubMed Central  Google Scholar 

  71. LAMMPS. http://lammps.sandia.gov

  72. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19

    CAS  Google Scholar 

  73. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Land H, Humble MS (2018) YASARA: a tool to obtain structural guidance in biocatalytic investigations. In: Protein engineering. Springer, pp 43–67

    Google Scholar 

  75. Hutter J, Iannuzzi M, Schiffmann F, VandeVondele J (2014) cp2k: atomistic simulations of condensed matter systems. Wiley Interdiscip Rev Comput Mol Sci 4(1):15–25

    CAS  Google Scholar 

  76. GROMACS website. https://www.gromacs.org

  77. Jewel Y, Liu T, Eyler A, Zhong W, Liu J (2015) Potential application and molecular mechanisms of soy protein on the enhancement of graphite nanoplatelet dispersion. J Phys Chem C 119(47):26760–26767

    CAS  Google Scholar 

  78. Migliolo L, Silva ON, Silva PA, Costa MP, Costa CR, Nolasco DO, Barbosa JA, Silva MR, Bemquerer MP, Lima LM (2012) Structural and functional characterization of a multifunctional alanine-rich peptide analogue from Pleuronectes americanus. PLoS One 7(10):e47047

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Zou Z, Alibiglou H, Mate DM, Davari MD, Jakob F, Schwaneberg U (2018) Directed sortase A evolution for efficient site-specific bioconjugations in organic co-solvents. Chem Commun 54(81):11467–11470

    CAS  Google Scholar 

  80. Fioroni M, Burger K, Mark AE, Roccatano D (2000) A new 2, 2, 2-trifluoroethanol model for molecular dynamics simulations. J Phys Chem B 104(51):12347–12354

    CAS  Google Scholar 

  81. Geerke DP, Oostenbrink C, van der Vegt NF, van Gunsteren WF (2004) An effective force field for molecular dynamics simulations of dimethyl sulfoxide and dimethyl sulfoxide−water mixtures. J Phys Chem B 108(4):1436–1445

    CAS  Google Scholar 

  82. Nagy PI, Völgyi G, Takács-Novák K (2008) Monte carlo structure simulations for aqueous 1,4-dioxane solutions. J Phys Chem B 112(7):2085–2094

    CAS  PubMed  Google Scholar 

  83. Taha M, Khoiroh I, Lee M-J (2013) Phase behavior and molecular dynamics simulation studies of new aqueous two-phase separation systems induced by HEPES buffer. J Phys Chem B 117(2):563–582

    CAS  PubMed  Google Scholar 

  84. Mark P, Nilsson L (2001) Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J Phys Chem A 105(43):9954–9960

    CAS  Google Scholar 

  85. Khabiri M, Minofar B, Brezovský J, Damborský J, Ettrich R (2013) Interaction of organic solvents with protein structures at protein-solvent interface. J Mol Model 19(11):4701–4711

    CAS  PubMed  Google Scholar 

  86. Josiane F-MV, Fulton A, Zhao J, Weber L, Jaeger K-E, Schwaneberg U, Zhu L (2018) Exploring the full natural diversity of single amino acid exchange reveals that 40–60% of BSLA positions improve organic solvents resistance. Bioresour Bioprocess 5(1):2

    Google Scholar 

  87. Markel U, Zhu L, Frauenkron-Machedjou VJ, Zhao J, Bocola M, Davari MD, Jaeger K-E, Schwaneberg U (2017) Are directed evolution approaches efficient in exploring nature’s potential to stabilize a lipase in organic cosolvents? Catalysts 7(5):142

    Google Scholar 

  88. Park HJ, Joo JC, Park K, Kim YH, Yoo YJ (2013) Prediction of the solvent affecting site and the computational design of stable Candida antarctica lipase B in a hydrophilic organic solvent. J Biotechnol 163(3):346–352

    CAS  PubMed  Google Scholar 

  89. Park HJ, Joo JC, Park K, Yoo YJ (2012) Stabilization of Candida antarctica lipase B in hydrophilic organic solvent by rational design of hydrogen bond. Biotechnol Bioproc E 17(4):722–728

    CAS  Google Scholar 

  90. Moore JC, Arnold FH (1996) Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents. Nat Biotechnol 14(4):458–467

    CAS  PubMed  Google Scholar 

  91. Ogino H, Uchiho T, Doukyu N, Yasuda M, Ishimi K, Ishikawa H (2007) Effect of exchange of amino acid residues of the surface region of the PST-01 protease on its organic solvent-stability. Biochem Biophys Res Commun 358(4):1028–1033

    CAS  PubMed  Google Scholar 

  92. Badoei-Dalfard A, Khajeh K, Asghari SM, Ranjbar B, Karbalaei-Heidari HR (2010) Enhanced activity and stability in the presence of organic solvents by increased active site polarity and stabilization of a surface loop in a metalloprotease. J Biochem 148(2):231–238

    CAS  PubMed  Google Scholar 

  93. Femmer C, Bechtold M, Panke S (2020) Semi-rational engineering of an amino acid racemase that is stabilized in aqueous/organic solvent mixtures. Biotechnol Bioeng 117(9):2683–2693

    Google Scholar 

  94. Reetz MT, Wu S (2008) Greatly reduced amino acid alphabets in directed evolution: making the right choice for saturation mutagenesis at homologous enzyme positions. Chem Commun 43:5499–5501

    Google Scholar 

  95. Koudelakova T, Chaloupkova R, Brezovsky J, Prokop Z, Sebestova E, Hesseler M, Khabiri M, Plevaka M, Kulik D, Kuta Smatanova I (2013) Engineering enzyme stability and resistance to an organic cosolvent by modification of residues in the access tunnel. Angew Chem Int Ed 125(7):2013–2017

    Google Scholar 

  96. Chen K, Arnold FH (1993) Tuning the activity of an enzyme for unusual environments: sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide. Proc Natl Acad Sci USA 90(12):5618–5622

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Kawata T, Ogino H (2010) Amino acid residues involved in organic solvent-stability of the LST-03 lipase. Biochem Biophys Res Commun 400(3):384–388

    CAS  PubMed  Google Scholar 

  98. Ogino H, Uchiho T, Yokoo J, Kobayashi R, Ichise R, Ishikawa H (2001) Role of intermolecular disulfide bonds of the organic solvent-stable PST-01 protease in its organic solvent stability. Appl Environ Microbiol 67(2):942–947

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Cui H, Davari MD, Schwaneberg U (2020) CompassR yields highly organic solvent-tolerant enzymes through recombination of compatible substitutions. Chem Eur J. https://doi.org/10.1002/chem.202004471

  100. Cui H, Cao H, Cai H, Jaeger K-E, Davari MD, Schwaneberg U (2020) Computer-assisted recombination (CompassR) teaches us how to recombine beneficial substitutions from directed evolution campaigns. Chem Eur J 26(3):643–649. https://doi.org/10.1002/chem.201903994

    Article  CAS  PubMed  Google Scholar 

  101. Cui H, Davari MD, Schwaneberg U. Recombination of single beneficial substitutions obtained from protein engineering by computer-assisted recombination (CompassR). Methods in molecular biology. Springer Nature (in press)

    Google Scholar 

  102. Cui H, Pramanik S, Jaeger KE, Davari MD, Schwaneberg U (2021) CompassR-guided recombination unlocks design principles to stabilize lipases in ILs with minimal experimental efforts. Green Chemistry 23(9):3474–3486.

    Google Scholar 

  103. Bornscheuer UT, Hauer B, Jaeger KE, Schwaneberg U (2019) Directed evolution empowered redesign of natural proteins for the sustainable production of chemicals and pharmaceuticals. Angew Chem Int Ed 58(1):36–40

    CAS  Google Scholar 

  104. Chen K, Arnold FH (1991) Enzyme engineering for nonaqueous solvents: random mutagenesis to enhance activity of subtilisin E in polar organic media. Nat Biotechnol 9(11):1073–1077

    CAS  Google Scholar 

  105. Nucci NV, Pometun MS, Wand AJ (2011) Site-resolved measurement of water-protein interactions by solution NMR. Nat Struct Mol Biol 18(2):245–249

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L (2005) The FoldX web server: an online force field. Nucleic Acids Res 33(suppl_2):W382–W388

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Lemkul JA. GROMACS tutorials. http://www.mdtutorials.com/gmx/

  108. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24(16):1999–2012

    CAS  PubMed  Google Scholar 

  109. Janert PK (2010) Gnuplot in action: understanding data with graphs. Manning

    Google Scholar 

  110. DeLano WL (2002) The PyMOL molecular graphics system. http://www.pymol.org

  111. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi D. Davari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cui, H., Vedder, M., Schwaneberg, U., Davari, M.D. (2022). Using Molecular Simulation to Guide Protein Engineering for Biocatalysis in Organic Solvents. In: Magnani, F., Marabelli, C., Paradisi, F. (eds) Enzyme Engineering. Methods in Molecular Biology, vol 2397. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1826-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1826-4_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1825-7

  • Online ISBN: 978-1-0716-1826-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics