Skip to main content

Adeno-Associated Viral Vector Immobilization and Local Delivery from Bare Metal Surfaces

  • Protocol
  • First Online:
Biomedical Engineering Technologies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2394))

  • 1902 Accesses

Abstract

Spatially and temporally controlled delivery of biologicals, including gene vectors, represents an unmet need for regenerative medicine and gene therapy applications. Here we describe a method of reversible attachment of serotype 2 adeno-associated viral vectors (AAV2) to metal surfaces. This technique enables localized delivery of the vector to the target cell population in vitro and in vivo with the subsequent effective transduction of cells adjacent to the metal substrate. The underlying bioengineering approach employs coordination chemistry between the bisphosphonic groups of polyallylamine bisphosphonates and the metal atoms on the surface of metallic samples. Formation of a stable polybisphosphonate monolayer with plentiful allyl-derived amines allows for further chemical modification to consecutively append thiol-modified protein G, an anti-AAV2 antibody, and AAV2 particles. Herein we present a detailed protocols for the metal substrate modification, for the visualization of the metal surface-immobilized vector using direct and indirect fluorescent AAV2 labeling and scanning electron microscopy, for quantification of the surface-immobilized vector load with RT-PCR, and for the localized vector transduction in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shahryari A, Saghaeian Jazi M, Mohammadi S et al (2019) Development and clinical translation of approved gene therapy products for genetic disorders. Front Genet 10:868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wei W, Luo J (2019) Thoughts on chemistry, manufacturing, and control of cell therapy products for clinical application. Hum Gene Ther 30:119–126

    Article  CAS  PubMed  Google Scholar 

  3. Humbert O, Davis L, Maizels N (2012) Targeted gene therapies: tools, applications, optimization. Crit Rev Biochem Mol Biol 47:264–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Waehler R, Russell SJ, Curiel DT (2007) Engineering targeted viral vectors for gene therapy. Nat Rev Genet 8:573–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hacein-Bey-Abina S, Von Kalle C, Schmidt M et al (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415–419

    Article  CAS  PubMed  Google Scholar 

  6. Bengali Z, Rea JC, Gibly RF et al (2009) Efficacy of immobilized polyplexes and lipoplexes for substrate-mediated gene delivery. Biotechnol Bioeng 102:1679–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bengali Z, Shea LD (2005) Gene delivery by immobilization to cell-adhesive substrates. MRS Bull 30:659–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jang JH, Bengali Z, Houchin TL et al (2006) Surface adsorption of DNA to tissue engineering scaffolds for efficient gene delivery. J Biomed Mater Res A 77:50–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pannier AK, Anderson BC, Shea LD (2005) Substrate-mediated delivery from self-assembled monolayers: effect of surface ionization, hydrophilicity, and patterning. Acta Biomater 1:511–522

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fishbein I, Alferiev I, Bakay M et al (2008) Local delivery of gene vectors from bare-metal stents by use of a biodegradable synthetic complex inhibits in-stent restenosis in rat carotid arteries. Circulation 117:2096–2103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fishbein I, Alferiev IS, Nyanguile O et al (2006) Bisphosphonate-mediated gene vector delivery from the metal surfaces of stents. Proc Natl Acad Sci U S A 103:159–164

    Article  CAS  PubMed  Google Scholar 

  12. Fishbein I, Forbes SP, Chorny M et al (2013) Adenoviral vector tethering to metal surfaces via hydrolyzable cross-linkers for the modulation of vector release and transduction. Biomaterials 34:6938–6948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fishbein I, Guerrero DT, Alferiev IS et al (2017) Stent-based delivery of adeno-associated viral vectors with sustained vascular transduction and iNOS-mediated inhibition of in-stent restenosis. Gene Ther 24:717–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee EJ, Robinson TM, Tabor JJ et al (2018) Reverse transduction can improve efficiency of AAV vectors in transduction-resistant cells. Biotechnol Bioeng 115:3042–3049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McConnell KI, Gomez EJ, Suh J (2012) The identity of the cell adhesive protein substrate affects the efficiency of adeno-associated virus reverse transduction. Acta Biomater 8:4073–4079

    Article  CAS  PubMed  Google Scholar 

  16. Brunger JM, Huynh NP, Guenther CM et al (2014) Scaffold-mediated lentiviral transduction for functional tissue engineering of cartilage. Proc Natl Acad Sci U S A 111:E798–E806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fishbein I, Forbes SP, Adamo RF et al (2014) Vascular gene transfer from metallic stent surfaces using adenoviral vectors tethered through hydrolysable cross-linkers. J Vis Exp:e51653

    Google Scholar 

  18. Wang D, Tai PWL, Gao G (2019) Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov 18:358–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are willing to acknowledge the following funding sources: 1) R01HL137762 (NIH-NHBLI) and 2) Erin Fund (The Children’s Hospital of Philadelphia). Ms. Susan Kerns provided an excellent administrative support for the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilia Fishbein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pressly, B.B., Hooshdaran, B., Alferiev, I.S., Chorny, M., Levy, R.J., Fishbein, I. (2022). Adeno-Associated Viral Vector Immobilization and Local Delivery from Bare Metal Surfaces. In: Rasooly, A., Baker, H., Ossandon, M.R. (eds) Biomedical Engineering Technologies. Methods in Molecular Biology, vol 2394. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1811-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1811-0_32

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1810-3

  • Online ISBN: 978-1-0716-1811-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics