Skip to main content

An Ultracompact Real-Time Fluorescence Loop-Mediated Isothermal Amplification (LAMP) Analyzer

  • Protocol
  • First Online:
Biomedical Engineering Technologies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2393))

Abstract

Low-cost access to the highly sensitive and specific detection of the pathogen in the field is a crucial attribute for the next generation point-of-care (POC) platforms. In this work, we developed a real-time fluorescence nucleic acid testing device with automated and scalable sample preparation capability for field malaria diagnosis. The palm-sized battery-powered analyzer equipped with a disposable microfluidic reagent compact disc described in the companion Chap. 16 which facilitates four isothermal nucleic acid tests in parallel from raw blood samples to answer. The platform has a user-friendly interface such as touchscreen LCD and smartphone data connectivity for on-site and remote healthcare delivery, respectively. The chapter mainly focuses on describing integration procedures of the real-time fluorescence LAMP analyzer and the validation of its subsystems. The device cost is significantly reduced compared to the commercial benchtop real-time machine and other existing POC platforms. As a platform technology, self-sustainable, portable, low-cost, and easy-to-use analyzer design should create a new paradigm of molecular diagnosis toward a variety of infectious diseases at the point of need.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vashist SK (2017) Point-of-care diagnostics: recent advances and trends. Biosensors (Basel) 7(4):62

    Google Scholar 

  2. Vashist SK, Luppa PB, Yeo LY et al (2015) Emerging Technologies for Next-Generation Point-of-Care Testing. Trends Biotechnol 33(11):692–705

    CAS  PubMed  Google Scholar 

  3. Mauk M, Song J, Bau HH et al (2017) Miniaturized devices for point of care molecular detection of HIV. Lab Chip 17(3):382–394

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Laksanasopin T, Guo TW, Nayak S et al (2015) A smartphone dongle for diagnosis of infectious diseases at the point of care. Sci Transl Med 7(273):1–11

    Google Scholar 

  5. Chiu DT, deMello AJ, Di Carlo D et al (2017) Small but perfectly formed? Successes, challenges, and opportunities for microfluidics in the chemical and biological sciences. Chem 2(2):201–223

    CAS  Google Scholar 

  6. Chen H, Liu K, Li Z et al (2019) Point of care testing for infectious diseases. Clin Chim Acta 493:138–147

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wu L, van den Hoogen LL, Slater H et al (2015) Comparison of diagnostics for the detection of asymptomatic Plasmodium falciparum infections to inform control and elimination strategies. Nature 528(7580):S86–S93

    PubMed  Google Scholar 

  8. Hopkins H, Gonzalez IJ, Polley SD et al (2013) Highly sensitive detection of malaria Parasitemia in a malaria-endemic setting: performance of a new loop-mediated isothermal amplification kit in a remote Clinic in Uganda. J Infect Dis 208(4):645–652

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Vallejo AF, Martinez NL, Gonzalez IJ et al (2015) Evaluation of the loop mediated isothermal DNA amplification (LAMP) kit for malaria diagnosis in P. vivax endemic settings of Colombia. PLoS Negl Trop Dis 9(1):e3453

    PubMed  PubMed Central  Google Scholar 

  10. Modak SS, Barber CA, Geva E et al (2016) Rapid point-of-care isothermal amplification assay for the detection of malaria without nucleic acid purification. Infect Dis 9:1–9

    Google Scholar 

  11. Aydin-Schmidt B, Xu WP, Gonzalez IJ et al (2014) Loop mediated isothermal amplification (LAMP) accurately detects malaria DNA from filter paper blood samples of low density Parasitaemias. PLoS One 9(8):e103905

    PubMed  PubMed Central  Google Scholar 

  12. Morris U, Khamis M, Aydin-Schmidt B et al (2015) Field deployment of loop-mediated isothermal amplification for centralized mass-screening of asymptomatic malaria in Zanzibar: a pre-elimination setting. Malar J 14:1–6

    Google Scholar 

  13. Han ET, Watanabe R, Sattabongkot J et al (2007) Detection of four plasmodium species by genus- and species-specific loop-mediated isothermal amplification for clinical diagnosis. J Clin Microbiol 45(8):2521–2528

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Polley SD, Mori Y, Watson J et al (2010) Mitochondrial DNA targets increase sensitivity of malaria detection using loop-mediated isothermal amplification. J Clin Microbiol 48(8):2866–2871

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Safavieh M, Kanakasabapathy MK, Tarlan F et al (2016) Emerging loop-mediated isothermal amplification-based microchip and microdevice Technologies for Nucleic Acid Detection. ACS Biomater Sci Eng 2(3):278–294

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Tomita N, Mori Y, Kanda H et al (2008) Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat Protoc 3(5):877–882

    CAS  PubMed  Google Scholar 

  17. Goto M, Honda E, Ogura A et al (2009) Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy naphthol blue. BioTechniques 46(3):167–172

    CAS  PubMed  Google Scholar 

  18. Notomi T, Mori Y, Tomita N et al (2015) Loop-mediated isothermal amplification (LAMP): principle, features, and future prospects. J Microbiol 53(1):1–5

    CAS  PubMed  Google Scholar 

  19. Kim J, Johnson M, Hill P et al (2009) Microfluidic sample preparation: cell lysis and nucleic acid purification. Integr Biol 1(10):574–586

    CAS  Google Scholar 

  20. Myers FB, Henrikson RH, Bone J et al (2013) A handheld point-of-care genomic diagnostic system. PLoS One 8(8):e70266

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Liao SC, Peng J, Mauk MG et al (2016) Smart cup: a minimally-instrumented, smartphone-based point-of-care molecular diagnostic device. Sensor Actuat B Chem 229:232–238

    CAS  Google Scholar 

  22. Liu CC, Mauk MG, Hart R et al (2012) A low-cost microfluidic Chip for rapid genotyping of malaria-transmitting mosquitoes. PLoS One 7(8):e42222

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Choi S (2016) Powering point-of-care diagnostic devices. Biotechnol Adv 34(3):321–330

    PubMed  Google Scholar 

  24. Abel G (2015) Current status and future prospects of point-of-care testing around the globe. Expert Rev Mol Diagn 15(7):853–855

    CAS  PubMed  Google Scholar 

  25. Jung WE, Han J, Choi JW et al (2015) Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies. Microelectron Eng 132:46–57

    CAS  Google Scholar 

  26. Singleton J, Osborn JL, Lillis L et al (2014) Electricity-free amplification and detection for molecular point-of-care diagnosis of HIV-1. PLoS One 9(11):e113693

    PubMed  PubMed Central  Google Scholar 

  27. Curtis KA, Rudolph DL, Morrison D et al (2016) Single-use, electricity-free amplification device for detection of HIV-1. J Virol Methods 237:132–137

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Stedtfeld RD, Tourlousse DM, Seyrig G et al (2012) Gene-Z: a device for point of care genetic testing using a smartphone. Lab Chip 12(8):1454–1462

    CAS  PubMed  Google Scholar 

  29. Gorkin R, Park J, Siegrist J et al (2010) Centrifugal microfluidics for biomedical applications. Lab Chip 10(14):1758–1773

    CAS  PubMed  Google Scholar 

  30. Kim TH, Park J, Kim CJ et al (2014) Fully integrated lab-on-a-disc for nucleic acid analysis of foodborne pathogens. Anal Chem 86(8):3841–3848

    CAS  PubMed  Google Scholar 

  31. Dineva MA, MahiLum-Tapay L, Lee H (2007) Sample preparation: a challenge in the development of point-of-care nucleic acid-based assays for resource-limited settings. Analyst 132(12):1193–1199

    CAS  PubMed  Google Scholar 

  32. Kolluri N, Klapperich CM, Cabodi M (2018) Towards lab-on-a-chip diagnostics for malaria elimination. Lab Chip 18:75–94

    CAS  Google Scholar 

  33. Lucchi NW, Gaye M, Diallo MA et al (2016) Evaluation of the Illumigene malaria LAMP: a robust molecular diagnostic tool for malaria parasites. Sci Rep 6:36808. https://doi.org/10.1038/srep36808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sema M, Alemu A, Bayih AG et al (2015) Evaluation of non-instrumented nucleic acid amplification by loop-mediated isothermal amplification (NINA-LAMP) for the diagnosis of malaria in Northwest Ethiopia. Malar J 14. https://doi.org/10.1186/s12936-12015-10559-12939

  35. Jani IV, Meggi B, Vubil A et al (2016) Evaluation of the whole-blood Alere Q NAT point-of-care RNA assay for HIV-1 viral load monitoring in a primary health care setting in Mozambique. J Clin Microbiol 54(8):2104–2108

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hsiao NY, Dunning L, Kroon M et al (2016) Laboratory evaluation of the Alere q point-of-care system for early infant HIV diagnosis. PLoS One 11(3):e0152672

    PubMed  PubMed Central  Google Scholar 

  37. Nolte FS, Gauld L, Barrett SB (2016) Direct comparison of Alere i and cobas Liat influenza a and B tests for rapid detection of influenza virus infection. J Clin Microbiol 54(11):2763–2766

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Gous N, Scott L, Berrie L et al (2016) Options to expand HIV viral load testing in South Africa: evaluation of the GeneXpert(R) HIV-1 viral load assay. PLoS One 11(12):e0168244

    PubMed  PubMed Central  Google Scholar 

  39. Dormond L, Jaton K, de Valliere S et al (2015) Malaria real-time PCR: correlation with clinical presentation. New Microbes New Infect 5:10–12

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Choi G, Prince T, Miao J et al (2018) Sample-to-answer palm-sized nucleic acid testing device towards low-cost malaria mass screening. Biosens Bioelectron 115:83–90

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Choi G, Song D, Shrestha S et al (2016) A field-deployable mobile molecular diagnostic system for malaria at the point of need. Lab Chip 16(22):4341–4349

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Xu G, Nolder D, Reboud J et al (2016) Paper-origami-based multiplexed malaria diagnostics from whole blood. Angew Chem 55(49):15250–15253

    CAS  Google Scholar 

  43. Britton S, Cheng Q, Sutherland CJ et al (2015) A simple, high-throughput, colourimetric, field applicable loop-mediated isothermal amplification (HtLAMP) assay for malaria elimination. Malar J 14:335

    PubMed  PubMed Central  Google Scholar 

  44. Nair CB, Manjula J, Subramani PA et al (2016) Differential diagnosis of malaria on Truelab Uno(R), a portable, real-time, MicroPCR device for point-of-care applications. PLoS One 11(1):e0146961

    PubMed  PubMed Central  Google Scholar 

  45. Taylor BJ, Howell A, Martin KA et al (2014) A lab-on-chip for malaria diagnosis and surveillance. Malar J 13:179. https://doi.org/10.1186/1475-2875-1113-1179

    Article  PubMed  PubMed Central  Google Scholar 

  46. Liu Q, Nam J, Kim S et al (2016) Two-stage sample-to-answer system based on nucleic acid amplification approach for detection of malaria parasites. Biosens Bioelectron 82:1–8

    PubMed  Google Scholar 

  47. Shin Y, Lim SY, Lee TY et al (2015) Dimethyl adipimidate/thin film sample processing (DTS); a simple, low-cost, and versatile nucleic acid extraction assay for downstream analysis. Sci Rep 5:14127. https://doi.org/10.1038/Srep14127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li Y, Kumar N, Gopalakrishnan A et al (2013) Detection and species identification of malaria parasites by isothermal, tHDA amplification directly from human blood without sample preparation. J Mol Diagn 15(5):634–641

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants National Science Foundation under Grant No. 1710831, 1912410, and 1902503. We express our gratitude to Dr. Liwang Cui, Dr. Jun Miao, and Xiaolian Li for providing cultured malaria samples. W.G. acknowledges the support from Penn State Startup Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Guan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Choi, G., Guan, W. (2022). An Ultracompact Real-Time Fluorescence Loop-Mediated Isothermal Amplification (LAMP) Analyzer. In: Ossandon, M.R., Baker, H., Rasooly, A. (eds) Biomedical Engineering Technologies. Methods in Molecular Biology, vol 2393. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1803-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1803-5_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1802-8

  • Online ISBN: 978-1-0716-1803-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics