Skip to main content

Validation of Circular RNAs by PCR

  • Protocol
  • First Online:
PCR Primer Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2392))

Abstract

High-throughput RNA-sequencing (RNA-seq) technologies combined with novel bioinformatic algorithms discovered a large class of covalently closed single-stranded RNA molecules called circular RNAs (circRNAs ). Although RNA-seq has identified more than a million circRNAs, only a handful of them is validated with other techniques, including northern blotting, gel-trap electrophoresis, exonuclease treatment assays, and polymerase chain reaction (PCR). Reverse transcription (RT) of total RNA followed by PCR amplification is the most widely used technique for validating circRNAs identified in RNA-seq. RT-PCR is a highly reproducible, sensitive, and quantitative method for the detection and quantitation of circRNAs. This chapter details the basic guidelines for designing suitable primers for PCR amplification and validation of circRNAs .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7(2):e30733. https://doi.org/10.1371/journal.pone.0030733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ji P, Wu W, Chen S, Zheng Y, Zhou L, Zhang J, Cheng H, Yan J, Zhang S, Yang P, Zhao F (2019) Expanded expression landscape and prioritization of circular RNAs in mammals. Cell Rep 26(12):3444–3460.e3445. https://doi.org/10.1016/j.celrep.2019.02.078

    Article  CAS  PubMed  Google Scholar 

  3. Glazar P, Papavasileiou P, Rajewsky N (2014) circBase: a database for circular RNAs. RNA 20(11):1666–1670. https://doi.org/10.1261/rna.043687.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vromman M, Vandesompele J, Volders PJ (2020) Closing the circle: current state and perspectives of circular RNA databases. Brief Bioinform. https://doi.org/10.1093/bib/bbz175

  5. Zhang Y, Xue W, Li X, Zhang J, Chen S, Zhang JL, Yang L, Chen LL (2016) The biogenesis of nascent circular RNAs. Cell Rep 15(3):611–624. https://doi.org/10.1016/j.celrep.2016.03.058

    Article  CAS  PubMed  Google Scholar 

  6. Chen LL, Yang L (2015) Regulation of circRNA biogenesis. RNA Biol 12(4):381–388. https://doi.org/10.1080/15476286.2015.1020271

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388. https://doi.org/10.1038/nature11993

    Article  CAS  PubMed  Google Scholar 

  8. Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19(2):141–157. https://doi.org/10.1261/rna.035667.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338. https://doi.org/10.1038/nature11928

    Article  CAS  PubMed  Google Scholar 

  10. Panda AC, Grammatikakis I, Munk R, Gorospe M, Abdelmohsen K (2017) Emerging roles and context of circular RNAs. Wiley Interdiscip Rev RNA 8(2). https://doi.org/10.1002/wrna.1386

  11. Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32(5):453–461. https://doi.org/10.1038/nbt.2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Szabo L, Salzman J (2016) Detecting circular RNAs: bioinformatic and experimental challenges. Nat Rev Genet 17(11):679–692. https://doi.org/10.1038/nrg.2016.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Suzuki H, Zuo Y, Wang J, Zhang MQ, Malhotra A, Mayeda A (2006) Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res 34(8):e63. https://doi.org/10.1093/nar/gkl151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zirkel A, Papantonis A (2018) Detecting circular RNAs by RNA fluorescence in situ hybridization. Methods Mol Biol 1724:69–75. https://doi.org/10.1007/978-1-4939-7562-4_6

    Article  CAS  PubMed  Google Scholar 

  15. Schneider T, Schreiner S, Preusser C, Bindereif A, Rossbach O (2018) Northern blot analysis of circular RNAs. Methods Mol Biol 1724:119–133. https://doi.org/10.1007/978-1-4939-7562-4_10

    Article  CAS  PubMed  Google Scholar 

  16. Panda AC, Gorospe M (2018) Detection and analysis of circular RNAs by RT-PCR. Bio Protoc 8(6). https://doi.org/10.21769/BioProtoc.2775

  17. Das A, Rout PK, Gorospe M, Panda AC (2019) Rolling circle cDNA synthesis uncovers circular RNA splice variants. Int J Mol Sci 20(16). https://doi.org/10.3390/ijms20163988

  18. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3--new capabilities and interfaces. Nucleic Acids Res 40(15):e115. https://doi.org/10.1093/nar/gks596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Panda AC, Dudekula DB, Abdelmohsen K, Gorospe M (2018) Analysis of circular RNAs using the web tool CircInteractome. Methods Mol Biol 1724:43–56. https://doi.org/10.1007/978-1-4939-7562-4_4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108. https://doi.org/10.1038/nprot.2008.73

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the DBT/Wellcome Trust India Alliance Fellowship [grant number IA/I/18/2/504017] awarded to Amaresh Panda and intramural support from Institute of Life Sciences, DBT, India. Aniruddha Das and Debojyoti Das are supported by University Grant Commission of India.

Conflicts of interest: The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amaresh C. Panda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Das, A., Das, D., Panda, A.C. (2022). Validation of Circular RNAs by PCR. In: Basu, C. (eds) PCR Primer Design. Methods in Molecular Biology, vol 2392. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1799-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1799-1_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1798-4

  • Online ISBN: 978-1-0716-1799-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics