Skip to main content

Primer Design for the Analysis of Closely Related Species: Application of Noncoding mtDNA and cpDNA Sequences

  • Protocol
  • First Online:
PCR Primer Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2392))

Abstract

Noncoding regions of the chloroplast (cpDNA) and mitochondrial (mtDNA) genomes are commonly used in plant phylogenetic and population studies. Consensus primers, which are homologous to most coding regions, but amplify variable noncoding regions, are very useful for this purpose. However, high genetic diversity of plants poses a problem in developing molecular methods that require conserved DNA sequences between species.

This chapter describes the protocol for designing PCR primers suitable for analysis of closely related plant species. As an example, we used PCR primer design for cpDNA noncoding regions of the rye (Secale).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gielly L, Yuan YM, Kupfer P, Taberlet P (1996) Phylogenetic use of noncoding regions in the genus Gentiana L.: Choloroplast trnL (UAA) intron versus nuclear ribosomal internal transcribed spacer sequences. Mol Phylogenetics Evol 5:460–466

    Article  CAS  Google Scholar 

  2. Buckler IES, Holtsford TP (1996) Zea systematics: ribosomal ITS evidence. Mol Biol Evol 13:612–622

    Article  CAS  Google Scholar 

  3. Kelchner S (2000) The evolution of non-coding chloroplast DNA and its application in plant systematics. Ann Mo Bot Gard 87(4):482–498. https://doi.org/10.2307/2666142

    Article  Google Scholar 

  4. Lockton S, Gaut BS (2005) Plant conserved non-coding sequences and paralogue evolution. Trends Genet 21(1):60–65. https://doi.org/10.1016/j.tig.2004.11.013

    Article  CAS  PubMed  Google Scholar 

  5. Van de Velde J, Van Bel M, Vaneechoutte D, Vandepoele K (2016) A collection of conserved non-coding sequences to study gene regulation in flowering plants. Plant Physiol 171(4):2586–2598. https://doi.org/10.1104/pp.16.00821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Palmer JD, Jansen RK, Michaels HJ, Chase MW, Manhart JR (1988) Chloroplast DNA variation and plant phylogeny. Ann Missouri Bot Gard 75(4):1180–1206. Available from: http://www.jstor.org/stable/2399279

    Article  Google Scholar 

  7. Clegg MT, Gaut BS, Learn GH, Morton BR (1994) Rates and patterns of chloroplast DNA evolution. Proc Natl Acad Sci U S A 91(15):6795–6801. Available from: http://www.pnas.org/content/91/15/6795.abstract

    Article  CAS  Google Scholar 

  8. Wang X-R, Tsumura Y, Yoshimaru H, Nagasaka K, Szmidt AE (1999) Phylogenetic relationships of Eurasian pines (Pinus, Pinaceae) based on chloroplast rbcL, matk, rpl20-rps18 spacer, and trnv intron sequences. Am J Bot 86(12):1742–1753. https://doi.org/10.2307/2656672

    Article  CAS  PubMed  Google Scholar 

  9. Ogihara Y, Terachi T, Sasakuma T (1992) Structural analysis of length mutations in a hot-spot region of wheat chloroplasts DNAs. Curr Genet 22:251–258

    Article  CAS  Google Scholar 

  10. Chase MW, Fay MF (2009) Barcoding of plants and fungi. Science 325(5941):682–683. Available from: http://science.sciencemag.org/content/325/5941/682.abstract

    Article  CAS  Google Scholar 

  11. Ford CS, Kl A, Toomey N, Haider N, Van Alphen SJ, Kelly LJ et al (2009) Selection of candidate coding DNA barcoding regions for use on land plants. Bot J Linn Soc 159(1):1–11. https://doi.org/10.1111/j.1095-8339.2008.00938.x

    Article  Google Scholar 

  12. Hollingsworth PM, Graham SW, Little DP (2011) Choosing and using a plant DNA barcode. PLoS One 6(5):e19254. Available from: https://pubmed.ncbi.nlm.nih.gov/21637336

    Article  CAS  Google Scholar 

  13. Suo Z, Zhang C, Zheng Y, He L, Jin X, Hou B et al (2012) Revealing genetic diversity of tree peonies at micro-evolution level with hyper-variable chloroplast markers and floral traits. Plant Cell Rep 31(12):2199–2213. https://doi.org/10.1007/s00299-012-1330-0

    Article  CAS  PubMed  Google Scholar 

  14. Dong W, Xu C, Li D, Jin X, Li R, Lu Q et al (2016) Comparative analysis of the complete chloroplast genome sequences in psammophytic Haloxylon species (Amaranthaceae). PeerJ 4:e2699. https://doi.org/10.7717/peerj.2699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang M, Xie X, Yan B, Yan X, Luo J, Liu Y et al (2018) The completed chloroplast genome of Ostrya trichocarpa. Conserv Genet Resour 10(3):579–581. https://doi.org/10.1007/s12686-017-0869-z

    Article  Google Scholar 

  16. Xu C, Dong W, Li W, Lu Y, Xie X, Jin X et al (2017) Comparative analysis of six Lagerstroemia complete chloroplast genomes. Front Plant Sci 8:15

    PubMed  PubMed Central  Google Scholar 

  17. Chiang TY, Schaal BA, Peng C (1998) Universal primers for amplification and sequencing a noncoding spacer between the atpB and rbcL genes of chloroplast DNA. Bot Bull Acad Sin 39:245–250

    CAS  Google Scholar 

  18. Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of the three noncoding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109

    Article  CAS  Google Scholar 

  19. Demesure B, Sodzi N, Petit RJ (1995) A set of universal primers for amplification of polymorphic noncoding regions of mitochondrial and chloroplast DNA in plants. Mol Ecol 4:129–131

    Article  CAS  Google Scholar 

  20. Dumolin-Lapegue S, Pemonge MH, Petit RJ (1997) An enlarged set of consensus primers for the study of organelle DNA in plants. Mol Ecol 6(4):393–397

    Article  CAS  Google Scholar 

  21. Skuza L, Szućko I, Filip E, Strzała T (2019) Genetic diversity and relationship between cultivated, weedy and wild rye species as revealed by chloroplast and mitochondrial DNA non-coding regions analysis. PLoS One 14(2):e0213023. https://doi.org/10.1371/journal.pone.0213023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Duminil J, Pemonge MH, Petit RJ (2002) A set of 35 consensus primer pairs amplifying genes and introns of plant mitochondrial DNA. Mol Ecol Notes 2:428–430

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidia Skuza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Skuza, L. (2022). Primer Design for the Analysis of Closely Related Species: Application of Noncoding mtDNA and cpDNA Sequences. In: Basu, C. (eds) PCR Primer Design. Methods in Molecular Biology, vol 2392. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1799-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1799-1_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1798-4

  • Online ISBN: 978-1-0716-1799-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics