Abstract
Noncoding regions of the chloroplast (cpDNA) and mitochondrial (mtDNA) genomes are commonly used in plant phylogenetic and population studies. Consensus primers, which are homologous to most coding regions, but amplify variable noncoding regions, are very useful for this purpose. However, high genetic diversity of plants poses a problem in developing molecular methods that require conserved DNA sequences between species.
This chapter describes the protocol for designing PCR primers suitable for analysis of closely related plant species. As an example, we used PCR primer design for cpDNA noncoding regions of the rye (Secale).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Gielly L, Yuan YM, Kupfer P, Taberlet P (1996) Phylogenetic use of noncoding regions in the genus Gentiana L.: Choloroplast trnL (UAA) intron versus nuclear ribosomal internal transcribed spacer sequences. Mol Phylogenetics Evol 5:460–466
Buckler IES, Holtsford TP (1996) Zea systematics: ribosomal ITS evidence. Mol Biol Evol 13:612–622
Kelchner S (2000) The evolution of non-coding chloroplast DNA and its application in plant systematics. Ann Mo Bot Gard 87(4):482–498. https://doi.org/10.2307/2666142
Lockton S, Gaut BS (2005) Plant conserved non-coding sequences and paralogue evolution. Trends Genet 21(1):60–65. https://doi.org/10.1016/j.tig.2004.11.013
Van de Velde J, Van Bel M, Vaneechoutte D, Vandepoele K (2016) A collection of conserved non-coding sequences to study gene regulation in flowering plants. Plant Physiol 171(4):2586–2598. https://doi.org/10.1104/pp.16.00821
Palmer JD, Jansen RK, Michaels HJ, Chase MW, Manhart JR (1988) Chloroplast DNA variation and plant phylogeny. Ann Missouri Bot Gard 75(4):1180–1206. Available from: http://www.jstor.org/stable/2399279
Clegg MT, Gaut BS, Learn GH, Morton BR (1994) Rates and patterns of chloroplast DNA evolution. Proc Natl Acad Sci U S A 91(15):6795–6801. Available from: http://www.pnas.org/content/91/15/6795.abstract
Wang X-R, Tsumura Y, Yoshimaru H, Nagasaka K, Szmidt AE (1999) Phylogenetic relationships of Eurasian pines (Pinus, Pinaceae) based on chloroplast rbcL, matk, rpl20-rps18 spacer, and trnv intron sequences. Am J Bot 86(12):1742–1753. https://doi.org/10.2307/2656672
Ogihara Y, Terachi T, Sasakuma T (1992) Structural analysis of length mutations in a hot-spot region of wheat chloroplasts DNAs. Curr Genet 22:251–258
Chase MW, Fay MF (2009) Barcoding of plants and fungi. Science 325(5941):682–683. Available from: http://science.sciencemag.org/content/325/5941/682.abstract
Ford CS, Kl A, Toomey N, Haider N, Van Alphen SJ, Kelly LJ et al (2009) Selection of candidate coding DNA barcoding regions for use on land plants. Bot J Linn Soc 159(1):1–11. https://doi.org/10.1111/j.1095-8339.2008.00938.x
Hollingsworth PM, Graham SW, Little DP (2011) Choosing and using a plant DNA barcode. PLoS One 6(5):e19254. Available from: https://pubmed.ncbi.nlm.nih.gov/21637336
Suo Z, Zhang C, Zheng Y, He L, Jin X, Hou B et al (2012) Revealing genetic diversity of tree peonies at micro-evolution level with hyper-variable chloroplast markers and floral traits. Plant Cell Rep 31(12):2199–2213. https://doi.org/10.1007/s00299-012-1330-0
Dong W, Xu C, Li D, Jin X, Li R, Lu Q et al (2016) Comparative analysis of the complete chloroplast genome sequences in psammophytic Haloxylon species (Amaranthaceae). PeerJ 4:e2699. https://doi.org/10.7717/peerj.2699
Wang M, Xie X, Yan B, Yan X, Luo J, Liu Y et al (2018) The completed chloroplast genome of Ostrya trichocarpa. Conserv Genet Resour 10(3):579–581. https://doi.org/10.1007/s12686-017-0869-z
Xu C, Dong W, Li W, Lu Y, Xie X, Jin X et al (2017) Comparative analysis of six Lagerstroemia complete chloroplast genomes. Front Plant Sci 8:15
Chiang TY, Schaal BA, Peng C (1998) Universal primers for amplification and sequencing a noncoding spacer between the atpB and rbcL genes of chloroplast DNA. Bot Bull Acad Sin 39:245–250
Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of the three noncoding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109
Demesure B, Sodzi N, Petit RJ (1995) A set of universal primers for amplification of polymorphic noncoding regions of mitochondrial and chloroplast DNA in plants. Mol Ecol 4:129–131
Dumolin-Lapegue S, Pemonge MH, Petit RJ (1997) An enlarged set of consensus primers for the study of organelle DNA in plants. Mol Ecol 6(4):393–397
Skuza L, Szućko I, Filip E, Strzała T (2019) Genetic diversity and relationship between cultivated, weedy and wild rye species as revealed by chloroplast and mitochondrial DNA non-coding regions analysis. PLoS One 14(2):e0213023. https://doi.org/10.1371/journal.pone.0213023
Duminil J, Pemonge MH, Petit RJ (2002) A set of 35 consensus primer pairs amplifying genes and introns of plant mitochondrial DNA. Mol Ecol Notes 2:428–430
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Skuza, L. (2022). Primer Design for the Analysis of Closely Related Species: Application of Noncoding mtDNA and cpDNA Sequences. In: Basu, C. (eds) PCR Primer Design. Methods in Molecular Biology, vol 2392. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1799-1_6
Download citation
DOI: https://doi.org/10.1007/978-1-0716-1799-1_6
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-0716-1798-4
Online ISBN: 978-1-0716-1799-1
eBook Packages: Springer Protocols