Skip to main content

Agrobacterium tumefaciens-Mediated Transformation Method for Fusarium oxysporum

  • Protocol
  • First Online:
Fusarium wilt

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2391))

Abstract

Agrobacterium tumefaciens-mediated transformation (ATMT) is becoming a popular effective system as an insertional mutagenesis tool in filamentous fungi. An efficient Agrobacterium tumefaciens-mediated transformation approach was developed for the plant pathogenic fungus, F. oxysporum, the causal agent of Apple replant disease (ARD) in China. Four parameters were selected to optimize efficiencies of transformation. A. tumefaciens concentration, conidial concentration of F. oxysporum, and co-culture temperature and time have a significant influence on all parameters. Transformants emit green fluorescence under fluorescence microscopy. The integration of a mitotically stable hygromycin resistance gene (hph) in the genome is confirmed by PCR. The transformation efficiency can reach up to 300 transformants per 106 conidia under optimal conditions. This ATMT method is an efficient tool for insertional mutagenesis of F. oxysporum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu T, Liu L, Jiang X, Hou J, Fu K, Zhou F, Chen J (2010) Agrobacterium-mediated transformation as a useful tool for the molecular genetic study of the phytopathogen Curvularia lunata. Eur J Plant Pathol 126:363–371

    Article  CAS  Google Scholar 

  2. Akashi H, Matsumoto S, Taira K (2005) Gene discovery by ribozyme and siRNA libraries. Nat Rev Mol Cell Bio 6:413–422

    Article  CAS  Google Scholar 

  3. Jiang D, Zhu W, Wang Y, Sun C, Zhang KQ, Yang J (2013) Molecular tools for functional genomics in filamentous fungi: recent advances and new strategies. Biotechnol Adv 31:1562–1574

    Article  CAS  Google Scholar 

  4. Lu S, Lyngholm L, Yang G, Bronson C, Yoder OC, Turgeon BG (1994) Tagged mutations at the tox1 locus of cochliobolus heterostrophus by restriction enzyme-mediated integration. Proc Natl Acad Sci U S A 91:12649–12653

    Article  CAS  Google Scholar 

  5. Abuodeh RO, Orbach MJ, Mandel MA, Das A, Galgiani JN (2000) Genetic transformation of Coccidioides immitis facilitated by Agrobacterium tumefaciens. J Infect Dis 181:2106–2110

    Article  CAS  Google Scholar 

  6. Rogers CW, Challen MP, Green JR, Whipps JM (2004) Use of REMI and Agrobacterium-mediated transformation to identify pathogenicity mutants of the biocontrol fungus, Coniothyrium minitans. Fems Microbiol Lett 241:207–214

    Article  CAS  Google Scholar 

  7. Van SL, Denman S, Cook NC (2009) Characterisation of apple replant disease under South African conditions and potential biological management strategies. Sci Hortic 119:153–162

    Article  Google Scholar 

  8. Betts MF, Tucker SL, Galadima N, Meng Y, Patel G, Li L, Donofrio N, Floyd A, Nolin S, Brown D, Mandel MA, Mitchell TK, Xu JR, Dean RA, Farman ML, Orbach MJ (2007) Development of a high throughput transformation system for insertional mutagenesis in Magnaporthe oryzae. Fungal Genet Biol 44:1035–1049

    Article  CAS  Google Scholar 

  9. Choi J, Park J, Jeon J, Chi MH, Goh J, Yoo SY, Park J, Jung K, Kim H, Park SY, Rho HS, Kim S, Kim BR, Han SS, Kang S, Lee YH (2007) Genome-wide analysis of T-DNA integration into the chromosomes of Magnaporthe oryzae. Mol Microbiol 66(2):371–382

    Article  CAS  Google Scholar 

  10. Dunn CN, Wang H (1998) Agrobacterium T-DNA: a silver bullet for filamentous fungi? Nat Biotechnol 16:817–818

    Article  Google Scholar 

  11. Hu Y, Dai QQ, Liu YY, Yang Z, Song N, Gao XN, Ralf TV, Kang ZS, Huang LL (2014) Agrobacterium tumefaciens-mediated transformation of the causative agent of Valsa canker of apple tree Valsa mali var mali. Curr Microbiol 68:769–776

    Article  CAS  Google Scholar 

  12. Palmero D, Rubio-Moraga A, Galvez-Patón L, Nogueras J, Abato C, Gómez-Gómez L, Ahrazem O (2014) Pathogenicity and genetic diversity of Fusarium oxysporum isolates from corms of Crocus sativus. Ind Corp Prod 61:186–192

    Article  CAS  Google Scholar 

  13. De Groot MJA, Bundock P, Hooykaas PJJ, Beijersbergen AGM (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16:839–842

    Article  Google Scholar 

  14. Frandsen RJN (2011) A guide to binary vectors and strategies for targeted genome modification in fungi using Agrobacterium tumefaciens-mediated transformation. J Microbiol Meth 87:247–262

    Article  CAS  Google Scholar 

  15. Geng Z, Zhu W, Su H, Zhao Y, Zhang KQ, Yang J (2014) Recent advances in genes involved in secondary metabolite synthesis, hyphal development, energy metabolism and pathogenicity in Fusarium graminearum (teleomorph Gibberella zeae). Biotechnol Adv 32:390–402

    Article  CAS  Google Scholar 

  16. Islam MN, Nizam S, Verma PK (2012) A highly efficient Agrobacterium mediated transformation system for chickpea wilt pathogen Fusarium oxysporum f. sp ciceri using DsRed-express to follow root colonisation. Microbiol Res 167:332–338

    Article  CAS  Google Scholar 

  17. Mullins ED, Chen X, Romaine P, Raina R, Geiser DM, Kang S (2001) Agrobacterium-mediated transformation of Fusarium oxysporum: an efficient tool for insertional mutagenesis and gene transfer. Phytopathology 91:173–180

    Article  CAS  Google Scholar 

  18. Wang M-J, Li P, Wu M, Fan YS, Gu SQ, Dong JG (2012) Constuction and evaluation of ATMT mutant library of Setosphaeria turcica. Sci Agric Sin 45:2384–2392

    CAS  Google Scholar 

  19. Hallen HE, Walting R, Adams GC (2003) Taxonomy and toxicity of Conocybe lactea and related species. Mycol Res 107:969–979

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Junxiang Zhang from the Chinese Academy of Agricultural Sciences for kindly providing the Agrobacterium tumefaciens strain LBA4404 and the pCamhybgfp vector. This work was supported partly by the National Key R&D Program of China (2016YFD0201100), the China Agriculture Research System (Cars-27), and the Hebei Natural Science Foundation (c2016204140).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dong, YH., Wang, ST. (2022). Agrobacterium tumefaciens-Mediated Transformation Method for Fusarium oxysporum. In: Coleman, J. (eds) Fusarium wilt. Methods in Molecular Biology, vol 2391. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1795-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1795-3_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1794-6

  • Online ISBN: 978-1-0716-1795-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics