Skip to main content

Screening and Assessment of Pisatin Demethylase Activity (PDA )

  • Protocol
  • First Online:
Fusarium wilt

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2391))

Abstract

Plants produce low molecular weight compounds with antimicrobial activity in response to microbial attack termed phytoalexins. The first phytoalexin identified was (+) pisatin from pea, and several fungi are able to detoxify pisatin to a less inhibitory compound, including F. oxysporum f. sp. pisi. This detoxification is catalyzed by demethylation of the compound (termed pisatin demethylase activity, or PDA) by the cytochrome P450, Pda. Here we detail two procedures to assess PDA using radiolabeled [14C]pisatin as a substrate and monitoring activity using a scintillation counter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cruickshank IAM, Perrin DR (1960) Isolation of a phytoalexin from Pisum sativum L. Nature 187:799–800

    Article  CAS  Google Scholar 

  2. Cruickshank I (1962) Studies on phytoalexins IV. The antimicrobial spectrum of pisatin. Aust J Biol Sci 15:147–159

    Article  CAS  Google Scholar 

  3. Delserone LM, McCluskey K, Matthews DE, Vanetten HD (1999) Pisatin demethylation by fungal pathogens and nonpathogens of pea: association with pisatin tolerance and virulence. Physiol Mol Plant Pathol 55:317–326

    Article  CAS  Google Scholar 

  4. George HL, VanEtten HD (2001) Characterization of pisatin-inducible cytochrome P450s in fungal pathogens of pea that detoxify the pea phytoalexin pisatin. Fungal Genet Biol 33:37–48

    Article  CAS  Google Scholar 

  5. Coleman JJ, Wasmann CC, Usami T, White GJ, Temporini ED, McCluskey K, VanEtten HD (2011) Characterization of the gene encoding pisatin demethylase (FoPDA1) in Fusarium oxysporum. Mol Plant-Microbe Interact 24:1482–1491

    Article  CAS  Google Scholar 

  6. Vanetten H, Temporini E, Wasmann C (2001) Phytoalexin (and phytoanticipin) tolerance as a virulence trait: why is it not required by all pathogens? Physiol Mol Plant Pathol 59:83–93

    Article  CAS  Google Scholar 

  7. Geiser DM, Al-Hatmi A, Aoki T, Arie T, Balmas V, Barnes I, Bergstrom GC, Bhattacharyya MKK, Blomquist CL, Bowden R, Brankovics B, Brown DW, Burgess LW, Bushley K, Busman M, Cano-Lira JF, Carrillo JD, Chang HX, Chen CY, Chen W, Chilvers MI, Chulze SN, Coleman JJ, Cuomo CA, de Beer ZW, de Hoog GS, Del Castillo-Múnera J, Del Ponte E, Diéguez-Uribeondo J, Di Pietro A, Edel-Hermann V, Elmer WH, Epstein L, Eskalen A, Esposto MC, Everts KL, Fernández-Pavía SP, da Silva GF, Foroud NA, Fourie G, Frandsen RJN, Freeman S, Freitag M, Frenkel O, Fuller KK, Gagkaeva T, Gardiner DM, Glenn AE, Gold S, Gordon T, Gregory NF, Gryzenhout M, Guarro J, Gugino B, Gutiérrez S, Hammond-Kosack K, Harris LJ, Homa M, Hong CF, Hornok L, Huang JW, Ilkit M, Jacobs A, Jacobs K, Jiang C, Jimenez-Gasco MDM, Kang S, Kasson MT, Kazan K, Kennell JC, Kim H, Kistler HC, Kuldau GA, Kulik T, Kurzai O, Laraba I, Laurence MH, Lee TY, Lee YW, Lee YH, Leslie JF, Liew ECY, Lofton LW, Logrieco A, Sánchez López-Berges M, Luque AG, Lysøe E, Ma LJ, Marra RE, Martin FN, May SR, McCormick S, McGee CT, Meis JF, Migheli Q, Mohamed Nor NMI, Monod M, Moretti A, Mostert D, Mulé G, Munaut F, Munkvold GP, Nicholson P, Nucci M, O'Donnell K, Pasquali M, Pfenning LH, Prigitano A, Proctor R, Ranque S, Rehner S, Rep M, Rodríguez-Alvarado G, Rose LJ, Roth MG, Ruiz-Roldán C, Saleh AA, Salleh B, Sang H, Scandiani M, Scauflaire J, Schmale D 3rd, Short DP, Šišić A, Smith J, Smyth CW, Son H, Spahr E, Stajich JE, Steenkamp E, Steinberg C, Subramaniam R, Suga H, Summerell BA, Susca A, Swett CL, Toomajian C, Torres-Cruz TJ, Tortorano AM, Urban M, Vaillancourt LJ, Vallad GE, van der Lee T, Vanderpool D, van Diepeningen AD, Vaughan M, Venter E, Vermeulen M, Verweij PE, Viljoen A, Waalwijk C, Wallace EC, Walther G, Wang J, Ward T, Wickes B, Wiederhold NP, Wingfield MJ, Wood AKM, Xu JR, Yang XB, Yli-Matilla T, Yun SH, Zakaria L, Zhang H, Zhang N, Zhang S, Zhang X (2020) Phylogenomic analysis of a 55.1 kb 19-gene dataset resolves a monophyletic Fusarium that includes the Fusarium solani Species Complex. Phytopathology 111:1064–1079

    Google Scholar 

  8. Wasmann CC, VanEtten HD (1996) Transformation-mediated chromosome loss and disruption of a gene for pisatin demethylase decrease the virulence of Nectria haematococca on pea. Mol Plant-Microbe Interact 9:793–803

    Article  CAS  Google Scholar 

  9. Coleman JJ, White GJ, Rodriguez-Carres M, VanEtten HD (2011) An ABC transporter and a cytochrome P450 of Nectria haematococca MPVI are virulence factors on pea and are the major tolerance mechanisms to the phytoalexin pisatin. Mol Plant-Microbe Interact 24:368–376

    Article  CAS  Google Scholar 

  10. Ciuffetti LM, VanEtten HD (1996) Virulence of a pisatin demethylase-deficient Nectria haematococca MPVI isolate is increased by transformation with a pisatin demethylase gene. Mol Plant-Microbe Interact 9:787–792

    Article  Google Scholar 

  11. Temporini ED, VanEtten HD (2004) An analysis of the phylogenetic distribution of the pea pathogenicity genes of Nectria haematococca MPVI supports the hypothesis of their origin by horizontal transfer and uncovers a potentially new pathogen of garden pea: Neocosmospora boniensis. Curr Genet 46:29–36

    Article  CAS  Google Scholar 

  12. Van Etten HD, Barz W (1981) Expression of pisatin demethylating ability in Nectria haematococca. Arch Microbiol 129:56–60

    Article  Google Scholar 

  13. Wang Q, Cobine PA, Coleman JJ (2018) Efficient genome editing in Fusarium oxysporum based on CRISPR/Cas9 ribonucleoprotein compleses. Fungal Genet Biol 117:21–29

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey J. Coleman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wasmann, C.C., Coleman, J.J. (2022). Screening and Assessment of Pisatin Demethylase Activity (PDA ). In: Coleman, J. (eds) Fusarium wilt. Methods in Molecular Biology, vol 2391. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1795-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1795-3_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1794-6

  • Online ISBN: 978-1-0716-1795-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics