Skip to main content

Homo-FRET Imaging to Study Protein–Protein Interaction and Complex Formation in Plants

  • Protocol
  • First Online:
Plant Synthetic Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2379))

  • 1384 Accesses

Abstract

Protein–protein interactions in living plant cells can be measured by changes in fluorescence anisotropy due to homo-FRET (Förster Resonance Energy Transfer). Here, the energy transfer between identical fluorophores, e.g., enhanced green fluorescent protein (EGFP) fused to a protein of interest, serves as a read-out for protein interaction and clustering. By applying homo-FRET imaging, not only dimeric complexes, but also bigger homomeric complex formation can be followed in vivo at high spatial and temporal resolution. Therefore, this method provides a powerful tool to investigate changes in complex formation over time in their natural environment with high precision at a subcellular level. Here, we describe the necessary theoretical background and how homo-FRET imaging is practically carried out. We also discuss potential pitfalls and points of consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Förster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Phys 437:55

    Article  Google Scholar 

  2. Vogel SS, Thaler C, Blank PS et al (eds) (2009) FLIM microscopy in biology and medicine: Chapter 10: Time-resolved fluorescence anisotropy. Taylor & Francis, Boca Raton, FL

    Google Scholar 

  3. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York, NY

    Book  Google Scholar 

  4. Bader AN, Hoetzl S, Hofman EG et al (2011) Homo-FRET imaging as a tool to quantify protein and lipid clustering. ChemPhysChem 12(3):475–483. https://doi.org/10.1002/cphc.201000801

    Article  CAS  PubMed  Google Scholar 

  5. Stahl Y, Grabowski S, Bleckmann A et al (2013) Moderation of Arabidopsis root stemness by CLAVATA1 and ARABIDOPSIS CRINKLY4 receptor kinase complexes. Curr Biol 23(5):362–371. https://doi.org/10.1016/j.cub.2013.01.045

    Article  CAS  PubMed  Google Scholar 

  6. Grabowski S (2013) Multiparameter-Fluoreszenz-Image-Spektroskopie von Proteinkomplexen in planta. Dissertation

    Google Scholar 

  7. Thaler C, Koushik SV, Puhl HL et al (2009) Structural rearrangement of CaMKIIalpha catalytic domains encodes activation. PNAS 106:6369–6374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bleckmann A, Weidtkamp-Peters S, Seidel CAM et al (2010) Stem cell signaling in Arabidopsis requires CRN to localize CLV2 to the plasma membrane. Plant Physiol 152(1):166–176. https://doi.org/10.1104/pp.109.149930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ameloot M, Vande Ven M, Acuña AU et al (2013) Fluorescence anisotropy measurements in solution: methods and reference materials (IUPAC technical report). Pure Appl Chem 85(3):589–608. https://doi.org/10.1351/PAC-REP-11-11-12

    Article  CAS  Google Scholar 

  10. Koshioka M, Sasaki K, Masuhara H (1995) Time-dependent fluorescence depolarization analysis in three-dimensional microspectroscopy. Appl Spectrosc 49(2):224

    Article  CAS  Google Scholar 

  11. Weidtkamp-Peters SS, Felekyan A, Bleckmann R et al (2009) Multiparameter fluorescence image spectroscopy to study molecular interactions. Photochemical & photobiological sciences Official journal of the European Photochemistry Association and the European Society for Photobiology 8(4):470–480

    Google Scholar 

Download references

Acknowledgments

We acknowledge the Deutsche Forschungsgemeinschaft (DFG) for financial support to Y.S. by grant STA12/12 1-1 and S.W.P by grant WE53/43 1-1. We are thankful to Jelle Ludolf Postma and Sebastian Hänsch for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stefanie Weidtkamp-Peters or Yvonne Stahl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Weidtkamp-Peters, S., Rehwald, S., Stahl, Y. (2022). Homo-FRET Imaging to Study Protein–Protein Interaction and Complex Formation in Plants. In: Zurbriggen, M.D. (eds) Plant Synthetic Biology. Methods in Molecular Biology, vol 2379. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1791-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1791-5_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1790-8

  • Online ISBN: 978-1-0716-1791-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics