Rawat W, Wang Z (2017) Deep convolutional neural networks for image classification: a comprehensive review. Neural Comput 29:2352–2449. https://doi.org/10.1162/neco_a_00990
CrossRef
PubMed
Google Scholar
Silver D, Huang A, Maddison CJ et al (2016) Mastering the game of Go with deep neural networks and tree search. Nature 529:484–489. https://doi.org/10.1038/nature16961
CAS
CrossRef
PubMed
Google Scholar
Silver D, Hubert T, Schrittwieser J et al (2018) A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 362:1140–1144. https://doi.org/10.1126/science.aar6404
CAS
CrossRef
PubMed
Google Scholar
Open AI, Berner C, Brockman G et al (2019) Dota 2 with large scale deep reinforcement learning. ArXiv191206680 Cs Stat
Google Scholar
Wu Y, Schuster M, Chen Z et al (2016) Google’s neural machine translation system: bridging the gap between human and machine translation. ArXiv160908144 Cs
Google Scholar
Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297. https://doi.org/10.1007/BF00994018
CrossRef
Google Scholar
Corwin H, Toshio F (1964) p-σ-π analysis. A method for the correlation of biological activity and chemical structure. J Am Chem Soc 86:1616–1626. https://doi.org/10.1021/ja01062a035
CrossRef
Google Scholar
Goodfellow I, Bengio Y, Courville A (2016) Deep learning. The MIT Press, Cambridge, MA
Google Scholar
LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444. https://doi.org/10.1038/nature14539
CAS
CrossRef
PubMed
Google Scholar
McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5:115–133. https://doi.org/10.1007/BF02478259
CrossRef
Google Scholar
Rosenblatt F The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65:386
Google Scholar
Rumelhart DE, JL MC, PDP Research Group C (1986) Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations. MIT Press, Cambridge, MA
CrossRef
Google Scholar
Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323:533–536. https://doi.org/10.1038/323533a0
CrossRef
Google Scholar
Boser BE, Guyon IM, Vapnik VN (1992) A training algorithm for optimal margin classifiers. In: Proceedings of the fifth annual workshop on computational learning theory. Association for Computing Machinery, New York, NY, pp 144–152
CrossRef
Google Scholar
Schölkopf B, Burges CJC, Smola AJ (1999) Advances in kernel methods: support vector learning. MIT Press, Cambridge, MA
Google Scholar
Dauphin YN, Pascanu R, Gulcehre C et al (2014) Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. Adv Neural Informat Process Syst 4:9
Google Scholar
Ge R, Huang F, Jin C, Yuan Y (2015) Escaping from saddle points—online stochastic gradient for tensor decomposition. In: Conference on learning theory. PMLR, pp 797–842
Google Scholar
Hinton GE, Osindero S, Teh Y-W (2006) A fast learning algorithm for deep belief nets. Neural Comput 18:1527–1554. https://doi.org/10.1162/neco.2006.18.7.1527
CrossRef
PubMed
Google Scholar
Bengio Y, Lamblin P, Popovici D, Larochelle H (2006) Greedy layer-wise training of deep networks. In: Proceedings of the 19th international conference on neural information processing systems. MIT Press, Cambridge, MA, pp 153–160
Google Scholar
Ranzato M, Huang FJ, Boureau Y, LeCun Y (2007) Unsupervised learning of invariant feature hierarchies with applications to object recognition. In: 2007 IEEE conference on computer vision and pattern recognition. pp 1–8
Google Scholar
Mendez D, Gaulton A, Bento AP et al (2019) ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res 47:D930–D940. https://doi.org/10.1093/nar/gky1075
CAS
CrossRef
PubMed
Google Scholar
Kim S, Chen J, Cheng T et al (2021) PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res 49:D1388–D1395. https://doi.org/10.1093/nar/gkaa971
CAS
CrossRef
PubMed
Google Scholar
Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) The Cambridge Structural Database. Acta Crystallogr B 72:171–179. https://doi.org/10.1107/S2052520616003954
CAS
CrossRef
Google Scholar
Ng A (2016) Machine learning yearning. Harvard Business Publishing
Google Scholar
Says L (2017) IPUs—a new breed of processor. EEJournal. https://www.eejournal.com/article/20170119-ipu/. Accessed 14 Feb 2021
Jouppi N, Young C, Patil N, Patterson D (2018) Motivation for and evaluation of the first tensor processing unit. IEEE Micro 38:10–19. https://doi.org/10.1109/MM.2018.032271057
CrossRef
Google Scholar
Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural networks. Proceedings of the fourteenth international conference on artificial intelligence and statistics. JMLR workshop and conference proceedings, pp 315–323
Google Scholar
Srivastava N, Hinton G, Krizhevsky A et al (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15:1929–1958
Google Scholar
Paszke A, Gross S, Massa F et al (2019) PyTorch: an imperative style, high-performance deep learning library. Adv Neural Inf Process Syst 32:8026–8037
Google Scholar
Collobert R, Kavukcuoglu K, Farabet C (2011) Torch7: a matlab-like environment for machine learning. Infoscience. http://infoscience.epfl.ch/record/192376. Accessed 14 Feb 2021
The Theano Development Team, Al-Rfou R, Alain G et al (2016) Theano: a Python framework for fast computation of mathematical expressions. ArXiv 160502688 Cs
Google Scholar
Jia Y, Shelhamer E, Donahue J et al (2014) Caffe: convolutional architecture for fast feature embedding
Google Scholar
Abadi M, Barham P, Chen J et al (2016) TensorFlow: a system for large-scale machine learning. In: 12th USENIX symposium on operating systems design and implementation (OSDI 16). pp 265–283
Google Scholar
Chollet F et al. (2015) Keras. https://github.com/fchollet/keras
Ramsundar B, Eastman P, Walters P et al (2019) Deep learning for the life sciences. O’Reilly Media
Google Scholar
Ma J, Sheridan RP, Liaw A et al (2015) Deep neural nets as a method for quantitative structure-activity relationships. J Chem Inf Model 55:263–274. https://doi.org/10.1021/ci500747n
CAS
CrossRef
PubMed
Google Scholar
Dahl GE, Jaitly N, Salakhutdinov R (2014) Multi-task neural networks for QSAR predictions. ArXiv14061231 Cs Stat
Google Scholar
Merget B, Turk S, Eid S et al (2017) Profiling prediction of kinase inhibitors: toward the virtual assay. J Med Chem 60:474–485. https://doi.org/10.1021/acs.jmedchem.6b01611
CAS
CrossRef
PubMed
Google Scholar
Lenselink EB, ten Dijke N, Bongers B et al (2017) Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set. J Cheminformatics 9:45. https://doi.org/10.1186/s13321-017-0232-0
CAS
CrossRef
Google Scholar
Winkler DA, Le TC (2017) Performance of deep and shallow neural networks, the universal approximation theorem, activity cliffs, and QSAR. Mol Inform 36:1600118. https://doi.org/10.1002/minf.201600118
CAS
CrossRef
Google Scholar
Muratov EN, Bajorath J, Sheridan RP et al (2020) QSAR without borders. Chem Soc Rev 49:3525–3564. https://doi.org/10.1039/D0CS00098A
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Ramsundar B, Kearnes S, Riley P et al (2015) Massively multitask networks for drug discovery. ArXiv150202072 Cs Stat
Google Scholar
Zhang Y, Yang Q (2018) A survey on multi-task learning. ArXiv170708114 Cs
Google Scholar
Xu Y, Ma J, Liaw A et al (2017) Demystifying multitask deep neural networks for quantitative structure—activity relationships. J Chem Inf Model 57:2490–2504. https://doi.org/10.1021/acs.jcim.7b00087
CAS
CrossRef
PubMed
Google Scholar
Sun M, Zhao S, Gilvary C et al (2020) Graph convolutional networks for computational drug development and discovery. Brief Bioinform 21:919–935. https://doi.org/10.1093/bib/bbz042
CrossRef
PubMed
Google Scholar
Coley CW, Barzilay R, Green WH et al (2017) Convolutional embedding of attributed molecular graphs for physical property prediction. J Chem Inf Model 57:1757–1772. https://doi.org/10.1021/acs.jcim.6b00601
CAS
CrossRef
PubMed
Google Scholar
Gilmer J, Schoenholz SS, Riley PF et al (2017) Neural message passing for quantum chemistry. In: Proceedings of the 34th international conference on machine learning—volume 70. JMLR.org, Sydney, NSW, pp 1263–1272
Google Scholar
Faber FA, Hutchison L, Huang B et al (2017) Prediction errors of molecular machine learning models lower than hybrid DFT error. J Chem Theory Comput 13:5255–5264. https://doi.org/10.1021/acs.jctc.7b00577
CAS
CrossRef
PubMed
Google Scholar
Montavon G, Samek W, Müller K-R (2018) Methods for interpreting and understanding deep neural networks. Digit Signal Process 73:1–15. https://doi.org/10.1016/j.dsp.2017.10.011
CrossRef
Google Scholar
Mater AC, Coote ML (2019) Deep learning in chemistry. J Chem Inf Model 59:2545–2559. https://doi.org/10.1021/acs.jcim.9b00266
CAS
CrossRef
PubMed
Google Scholar
Yoshikawa N, Terayama K, Sumita M et al (2018) Population-based De Novo molecule generation, using grammatical evolution. Chem Lett 47:1431–1434. https://doi.org/10.1246/cl.180665
CAS
CrossRef
Google Scholar
Rupakheti C, Virshup A, Yang W, Beratan DN (2015) Strategy to discover diverse optimal molecules in the small molecule universe. J Chem Inf Model 55:529–537. https://doi.org/10.1021/ci500749q
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Salimans T, Ho J, Chen X et al (2017) Evolution strategies as a scalable alternative to reinforcement learning. ArXiv170303864 Cs Stat
Google Scholar
Sanchez-Lengeling B, Aspuru-Guzik A (2018) Inverse molecular design using machine learning: generative models for matter engineering. Science 361:360–365. https://doi.org/10.1126/science.aat2663
CAS
CrossRef
PubMed
Google Scholar
Mercado R, Rastemo T, Lindelöf E et al (2020) Graph networks for molecular design. Mach Learn Sci Technol. https://doi.org/10.1088/2632-2153/abcf91
Xia X, Hu J, Wang Y et al (2019) Graph-based generative models for de Novo drug design. Drug Discov Today Technol 32–33:45–53. https://doi.org/10.1016/j.ddtec.2020.11.004
CrossRef
PubMed
Google Scholar
Kingma DP, Welling M (2013) Auto-encoding variational bayes
Google Scholar
Gómez-Bombarelli R, Wei JN, Duvenaud D et al (2018) Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent Sci 4:268–276. https://doi.org/10.1021/acscentsci.7b00572
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Winter R, Montanari F, Noé F, Clevert D-A (2019) Learning continuous and data-driven molecular descriptors by translating equivalent chemical representations. Chem Sci 10:1692–1701. https://doi.org/10.1039/C8SC04175J
CAS
CrossRef
PubMed
Google Scholar
Winter R, Montanari F, Steffen A et al (2019) Efficient multi-objective molecular optimization in a continuous latent space. Chem Sci 10:8016–8024. https://doi.org/10.1039/C9SC01928F
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Prykhodko O, Johansson SV, Kotsias P-C et al (2019) A de novo molecular generation method using latent vector based generative adversarial network. J Cheminformatics 11:74. https://doi.org/10.1186/s13321-019-0397-9
CrossRef
Google Scholar
Kadurin A, Nikolenko S, Khrabrov K et al (2017) druGAN: an advanced generative adversarial autoencoder model for de novo generation of new molecules with desired molecular properties in silico. Mol Pharm 14:3098–3104. https://doi.org/10.1021/acs.molpharmaceut.7b00346
CAS
CrossRef
PubMed
Google Scholar
Amimeur T, Shaver JM, Ketchem RR et al (2020) Designing feature-controlled humanoid antibody discovery libraries using generative adversarial networks. bioRxiv:2020.04.12.024844. https://doi.org/10.1101/2020.04.12.024844
Bowman SR, Vilnis L, Vinyals O et al (2016) Generating sentences from a continuous space. In: Proceedings of the 20th SIGNLL conference on computational natural language learning. Association for Computational Linguistics, Berlin, pp 10–21
CrossRef
Google Scholar
Blaschke T, Arús-Pous J, Chen H et al (2020) REINVENT 2.0: an AI tool for de novo drug design. J Chem Inf Model 60:5918–5922. https://doi.org/10.1021/acs.jcim.0c00915
CAS
CrossRef
PubMed
Google Scholar
Segler MHS, Kogej T, Tyrchan C, Waller MP (2018) Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Cent Sci 4:120–131. https://doi.org/10.1021/acscentsci.7b00512
CAS
CrossRef
PubMed
Google Scholar
O’Boyle N, Dalke A (2018) DeepSMILES: an adaptation of smiles for use in machine-learning of chemical structures. chemRxiv. https://doi.org/10.26434/chemrxiv.7097960.v1
Krenn M, Häse F, Nigam A et al (2020) Self-referencing embedded strings (SELFIES): a 100% robust molecular string representation. Mach Learn Sci Technol 1:045024. https://doi.org/10.1088/2632-2153/aba947
CrossRef
Google Scholar
Mirza M, Osindero S (2014) Conditional generative adversarial nets. arXiv
Google Scholar
Watkins CJCH, Dayan P (1992) Q-learning. Mach Learn 8:279–292. https://doi.org/10.1007/BF00992698
CrossRef
Google Scholar
Irwin JJ, Sterling T, Mysinger MM et al (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52:1757–1768. https://doi.org/10.1021/ci3001277
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Perron Q, Mirguet O, Tajmouati H et al (2021) Deep generative models for ligand-based de novo design applied to multi-parametric optimization. https://doi.org/10.26434/chemrxiv.13622417.v2
Brown N, Fiscato M, Segler MHS, Vaucher AC (2019) GuacaMol: benchmarking models for de novo molecular design. J Chem Inf Model 59:1096–1108. https://doi.org/10.1021/acs.jcim.8b00839
CAS
CrossRef
PubMed
Google Scholar
Polykovskiy D, Zhebrak A, Sanchez-Lengeling B et al (2020) Molecular sets (MOSES): a benchmarking platform for molecular generation models. Front Pharmacol 11:565644. https://doi.org/10.3389/fphar.2020.565644
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Irwin JJ, Shoichet BK (2005) ZINC—a free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177–182. https://doi.org/10.1021/ci049714+
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Sterling T, Irwin JJ (2015) ZINC 15—ligand discovery for everyone. J Chem Inf Model 55:2324–2337. https://doi.org/10.1021/acs.jcim.5b00559
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
van Hilten N, Chevillard F, Kolb P (2019) Virtual compound libraries in computer-assisted drug discovery. J Chem Inf Model 59:644–651. https://doi.org/10.1021/acs.jcim.8b00737
CAS
CrossRef
PubMed
Google Scholar
Lyu J, Wang S, Balius TE et al (2019) Ultra-large library docking for discovering new chemotypes. Nature 566:224–229. https://doi.org/10.1038/s41586-019-0917-9
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Gorgulla C, Boeszoermenyi A, Wang Z-F et al (2020) An open-source drug discovery platform enables ultra-large virtual screens. Nature 580:663–668. https://doi.org/10.1038/s41586-020-2117-z
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Clark DE (2020) Virtual screening: is bigger always better? Or can small be beautiful? J Chem Inf Model 60:4120–4123. https://doi.org/10.1021/acs.jcim.0c00101
CAS
CrossRef
PubMed
Google Scholar
Gentile F, Agrawal V, Hsing M et al (2020) Deep docking: a deep learning platform for augmentation of structure based drug discovery. ACS Cent Sci 6:939–949. https://doi.org/10.1021/acscentsci.0c00229
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Graff DE, Shakhnovich EI, Coley CW (2020) Accelerating high-throughput virtual screening through molecular pool-based active learning. ArXiv:201207127 Cs Q-Bio
Google Scholar
Ahmed L, Georgiev V, Capuccini M et al (2018) Efficient iterative virtual screening with Apache Spark and conformal prediction. J Cheminformatics 10:8. https://doi.org/10.1186/s13321-018-0265-z
CAS
CrossRef
Google Scholar
Svensson F, Norinder U, Bender A (2017) Improving screening efficiency through iterative screening using docking and conformal prediction. J Chem Inf Model 57:439–444. https://doi.org/10.1021/acs.jcim.6b00532
CAS
CrossRef
PubMed
Google Scholar
Jastrzębski S, Szymczak M, Pocha A et al (2020) Emulating docking results using a deep neural network: a new perspective for virtual screening. J Chem Inf Model 60:4246–4262. https://doi.org/10.1021/acs.jcim.9b01202
CAS
CrossRef
PubMed
Google Scholar
Gaulton A, Bellis LJ, Bento AP et al (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40:D1100–D1107. https://doi.org/10.1093/nar/gkr777
CAS
CrossRef
PubMed
Google Scholar
Irwin BWJ, Levell JR, Whitehead TM et al (2020) Practical applications of deep learning to impute heterogeneous drug discovery data. J Chem Inf Model 60:2848–2857. https://doi.org/10.1021/acs.jcim.0c00443
CAS
CrossRef
PubMed
Google Scholar
Whitehead TM, Irwin BWJ, Hunt P et al (2019) Imputation of assay bioactivity data using deep learning. J Chem Inf Model 59:1197–1204. https://doi.org/10.1021/acs.jcim.8b00768
CAS
CrossRef
PubMed
Google Scholar
Martin EJ, Polyakov VR, Zhu X-W et al (2019) All-Assay-Max2 pQSAR: activity predictions as accurate as four-concentration IC50s for 8558 Novartis assays. J Chem Inf Model 59:4450–4459. https://doi.org/10.1021/acs.jcim.9b00375
CAS
CrossRef
PubMed
Google Scholar
Russakovsky O, Deng J, Su H et al (2015) ImageNet large scale visual recognition challenge. Int J Comput Vis 115:211–252. https://doi.org/10.1007/s11263-015-0816-y
CrossRef
Google Scholar
Devlin J, Chang M-W, Lee K, Toutanova K (2019) BERT: pre-training of deep bidirectional transformers for language understanding. ArXiv181004805 Cs
Google Scholar
Brown TB, Mann B, Ryder N et al (2020) Language models are few-shot learners. ArXiv200514165 Cs
Google Scholar
Kryshtafovych A, Schwede T, Topf M et al (2019) Critical assessment of methods of protein structure prediction (CASP)—round XIII. Protein Struct Funct Bioinformat 87:1011–1020. https://doi.org/10.1002/prot.25823
CAS
CrossRef
Google Scholar
Senior AW, Evans R, Jumper J et al (2020) Improved protein structure prediction using potentials from deep learning. Nature 577:706–710. https://doi.org/10.1038/s41586-019-1923-7
CAS
CrossRef
PubMed
Google Scholar
https://predictioncenter.org/
Callaway E (2020) ‘It will change everything’: DeepMind’s AI makes gigantic leap in solving protein structures. Nature 588:203–204. https://doi.org/10.1038/d41586-020-03348-4
CAS
CrossRef
PubMed
Google Scholar
Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/nar/28.1.235
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
The UniProt Consortium (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47:D506–D515. https://doi.org/10.1093/nar/gky1049
CAS
CrossRef
Google Scholar
Deng J, Li K, Do M et al (2009) Construction and analysis of a large scale image ontology. Vision Sciences Society
Google Scholar
Common Crawl. https://commoncrawl.org/
Segler MHS, Preuss M, Waller MP (2018) Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555:604–610. https://doi.org/10.1038/nature25978
CAS
CrossRef
PubMed
Google Scholar
Jiménez-Luna J, Grisoni F, Schneider G (2020) Drug discovery with explainable artificial intelligence. Nat Mach Intell 2:573–584. https://doi.org/10.1038/s42256-020-00236-4
CrossRef
Google Scholar
Xiong Z, Wang D, Liu X et al (2020) Pushing the boundaries of molecular representation for drug discovery with the graph attention mechanism. J Med Chem 63:8749–8760. https://doi.org/10.1021/acs.jmedchem.9b00959
CAS
CrossRef
PubMed
Google Scholar
Sheridan RP (2019) Interpretation of QSAR models by coloring atoms according to changes in predicted activity: how robust is it? J Chem Inf Model 59:1324–1337. https://doi.org/10.1021/acs.jcim.8b00825
CAS
CrossRef
PubMed
Google Scholar
Liu B, Udell M (2020) Impact of accuracy on model interpretations. ArXiv201109903 Cs
Google Scholar
Goh GB, Siegel C, Vishnu A et al (2018) How much chemistry does a deep neural network need to know to make accurate predictions? ArXiv171002238 Cs Stat
Google Scholar
Schütt KT, Gastegger M, Tkatchenko A, Müller K-R (2019) Quantum-chemical insights from interpretable atomistic neural networks. In: Samek W, Montavon G, Vedaldi A et al (eds) Explainable AI: interpreting, explaining and visualizing deep learning. Springer International Publishing, Cham, pp 311–330
CrossRef
Google Scholar
Lapuschkin S, Wäldchen S, Binder A et al (2019) Unmasking Clever Hans predictors and assessing what machines really learn. Nat Commun 10:1096. https://doi.org/10.1038/s41467-019-08987-4
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Jia S, Lansdall-Welfare T, Cristianini N (2018) Right for the right reason: training agnostic networks. ArXiv180606296 Cs Stat 11191:164–174. https://doi.org/10.1007/978-3-030-01768-2_14
Ross AS, Hughes MC, Doshi-Velez F (2017) Right for the right reasons: training differentiable models by constraining their explanations. ArXiv170303717 Cs Stat
Google Scholar
Geirhos R, Rubisch P, Michaelis C et al (2019) ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. ArXiv181112231 Cs Q-Bio Stat
Google Scholar
Hirschfeld L, Swanson K, Yang K et al (2020) Uncertainty quantification using neural networks for molecular property prediction. J Chem Inf Model 60:3770–3780. https://doi.org/10.1021/acs.jcim.0c00502
CAS
CrossRef
PubMed
Google Scholar
David L, Thakkar A, Mercado R, Engkvist O (2020) Molecular representations in AI-driven drug discovery: a review and practical guide. J Cheminformatics 12:56. https://doi.org/10.1186/s13321-020-00460-5
CAS
CrossRef
Google Scholar
Yang K, Swanson K, Jin W et al (2019) Analyzing learned molecular representations for property prediction. J Chem Inf Model 59:3370–3388. https://doi.org/10.1021/acs.jcim.9b00237
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Fabian B, Edlich T, Gaspar H et al (2020) Molecular representation learning with language models and domain-relevant auxiliary tasks. ArXiv201113230 Cs
Google Scholar
Weininger D (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 28:31–36. https://doi.org/10.1021/ci00057a005
CAS
CrossRef
Google Scholar
Kearnes S, McCloskey K, Berndl M et al (2016) Molecular graph convolutions: moving beyond fingerprints. J Comput Aided Mol Des 30:595–608. https://doi.org/10.1007/s10822-016-9938-8
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
D’Amour A, Heller K, Moldovan D et al (2020) Underspecification presents challenges for credibility in modern machine learning. ArXiv201103395 Cs Stat
Google Scholar
Azure Machine Learning—ML as a Service | Microsoft Azure. https://azure.microsoft.com/en-us/services/machine-learning/. Accessed 6 Feb 2021
MLOps: continuous delivery and automation pipelines in machine learning. In: Google Cloud. https://cloud.google.com/solutions/machine-learning/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning. Accessed 6 Feb 2021
Gartner identifies five emerging trends that will drive technology innovation for the next decade. In: Gartner. https://www.gartner.com/en/newsroom/press-releases/2020-08-18-gartner-identifies-five-emerging-trends-that-will-drive-technology-innovation-for-the-next-decade. Accessed 9 Feb 2021
Méndez-Lucio O, Baillif B, Clevert D-A et al (2020) De novo generation of hit-like molecules from gene expression signatures using artificial intelligence. Nat Commun 11:10. https://doi.org/10.1038/s41467-019-13807-w
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Méndez-Lucio O, Zapata PAM, Wichard J et al (2020) Cell morphology-guided de novo hit design by conditioning generative adversarial networks on phenotypic image features. doi:https://doi.org/10.26434/chemrxiv.11594067.v1
Chindelevitch L, Ziemek D, Enayetallah A et al (2012) Causal reasoning on biological networks: interpreting transcriptional changes. Bioinformatics 28:1114–1121. https://doi.org/10.1093/bioinformatics/bts090
CAS
CrossRef
PubMed
Google Scholar
Liu A, Trairatphisan P, Gjerga E et al (2019) From expression footprints to causal pathways: contextualizing large signaling networks with CARNIVAL. Npj Syst Biol Appl 5:1–10. https://doi.org/10.1038/s41540-019-0118-z
CAS
CrossRef
Google Scholar