Skip to main content

Isolate and Culture Neural Stem Cells from the Mouse Adult Spinal Cord

  • Protocol
  • First Online:
Neural Progenitor Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2389))

Abstract

Whereas neural stem cells and their niches have been extensively studied in the brain, little is known on these cells, their environment, and their function in the adult spinal cord. Adult spinal cord neural stem cells are located in a complex niche surrounding the central canal, and these cells expressed genes which are specifically expressed in the caudal central nervous system (CNS). In-depth characterization of these cells in vivo and in vitro will provide interesting clues on the possibility to utilize this endogenous cell pool to treat spinal cord damages. We describe here a procedure to derive and culture neural spinal cord stem cells from adult mice using the neurosphere method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shihabuddin LS et al (2000) Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. J Neurosci 20:8727–8735

    Article  CAS  Google Scholar 

  2. Weiss S et al (1996) Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci 16:7599–7609

    Article  CAS  Google Scholar 

  3. Moreno-Manzano V et al (2009) Activated spinal cord ependymal stem cells rescue neurological function. Stem Cells 27:733–743

    Article  Google Scholar 

  4. Martens DJ, Seaberg RM, van der Kooy D (2002) In vivo infusions of exogenous growth factors into the fourth ventricle of the adult mouse brain increase the proliferation of neural progenitors around the fourth ventricle and the central canal of the spinal cord. Eur J Neurosci 16:1045–1057

    Article  Google Scholar 

  5. Meletis K et al (2008) Spinal cord injury reveals multilineage differentiation of ependymal cells. PLoS Biol 6:e182

    Article  Google Scholar 

  6. Sabourin JC et al (2009) A mesenchymal-like ZEB1(+) niche harbors dorsal radial glial fibrillary acidic protein-positive stem cells in the spinal cord. Stem Cells 27:2722–2733

    Article  CAS  Google Scholar 

  7. Becker CG, Becker T, Hugnot JP (2018) The spinal ependymal zone as a source of endogenous repair cells across vertebrates. Prog Neurobiol 170:67–80

    Article  CAS  Google Scholar 

  8. Hugnot JP, Franzen R (2010) The spinal cord ependymal region: a stem cell niche in the caudal central nervous system. Front Biosci 16:1044–1059

    Article  Google Scholar 

  9. Hamilton LK, Truong MKV, Bednarczyk MR et al (2009) Cellular organization of the central canal ependymal zone, a niche of latent neural stem cells in the adult mammalian spinal cord. Neuroscience 164:1044–1056

    Article  CAS  Google Scholar 

  10. Horner PJ et al (2000) Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. J Neurosci 20:2218–2228

    Article  CAS  Google Scholar 

  11. Kulbatski I et al (2007) Oligodendrocytes and radial glia derived from adult rat spinal cord progenitors: morphological and immunocytochemical characterization. J Histochem Cytochem 55:209–222

    Article  CAS  Google Scholar 

  12. Yamamoto S et al (2001) Transcription factor expression and notch-dependent regulation of neural progenitors in the adult rat spinal cord. J Neurosci 21:9814–9823

    Article  CAS  Google Scholar 

  13. Armando S et al (2007) Neurosphere-derived neural cells show region-specific behaviour in vitro. Neuroreport 18:1539–1542

    Article  Google Scholar 

  14. Pfenninger CV, Steinhoff C, Hertwig F, Nuber UA (2011) Prospectively isolated CD133/CD24-positive ependymal cells from the adult spinal cord and lateral ventricle wall differ in their long-term in vitro self-renewal and in vivo gene expression. Glia 59:68–81

    Article  Google Scholar 

  15. Kulbatski I, Tator CH (2009) Region-specific differentiation potential of adult rat spinal cord neural stem/precursors and their plasticity in response to in vitro manipulation. J Histochem Cytochem 57:405–423

    Article  CAS  Google Scholar 

  16. Ghazale H, Ripoll C, Leventoux N, Jacob L, Azar S, Mamaeva D, Glasson Y, Calvo CF, Thomas JL, Meneceur S, Lallemand Y, Rigau V, Perrin F, Noristani H, Rocamonde B, Huillard E, Bauchet L, Hugnot JP (2019) RNA profiling of the human and mouse spinal cord stem cell niches reveals an embryonic-like dorsal-ventral regionalization with MSX1+ roof-plate-derived cells. Stem Cell Report 12(5):1159–1177

    Google Scholar 

  17. Adrian EK, Walker BE (1962) Incorporation of thymidine-H3 by cells in normal and injured mouse spinal cord. J Neuropathol Exp Neurol 21:597–609

    Article  Google Scholar 

  18. Ren Y, Ao Y, O’Shea TM et al (2017) Ependymal cell contribution to scar formation after spinal cord injury is minimal, local and dependent on direct ependymal injury. Sci Rep 7:41122

    Article  CAS  Google Scholar 

  19. Barnabé-Heider F, Göritz C, Sabelström H et al (2010) Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell 7:470–482

    Article  Google Scholar 

  20. Sabelström H, Stenudd M, Réu P et al (2013) Resident neural stem cells restrict tissue damage and neuronal loss after spinal cord injury in mice. Science 342:637–640

    Article  Google Scholar 

  21. Shihabuddin LS, Horner PJ, Ray J, Gage FH (2000) Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. J Neurosci 20:8727–8735

    Article  CAS  Google Scholar 

  22. Deleyrolle L et al (2006) Exogenous and fibroblast growth factor 2/epidermal growth factor-regulated endogenous cytokines regulate neural precursor cell growth and differentiation. Stem Cells 24:748–762

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Our team is supported by grants from IRP (Switzerland), IRME (France), AFM (France), ANR EU ERANET Neuroniche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Philippe Hugnot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hugnot, JP. (2022). Isolate and Culture Neural Stem Cells from the Mouse Adult Spinal Cord. In: Deleyrolle, L.P. (eds) Neural Progenitor Cells. Methods in Molecular Biology, vol 2389. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1783-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1783-0_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1782-3

  • Online ISBN: 978-1-0716-1783-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics