Skip to main content

Isolation and Culture of Neural Stem/Progenitor Cells from the Postnatal Periventricular Region

  • Protocol
  • First Online:
Neural Progenitor Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2389))

Abstract

Due to the complexity of the neural stem cell (NSC) niche organization, the lack of specific NSC markers, and the difficulty of long-term tracking these cells and their progeny in vivo, the functional properties of the endogenous NSCs remain largely unexplored. These limitations have led to the development of methodologies to efficiently isolate, expand, and differentiate NSCs ex vivo. We describe here the peculiarities of the neurosphere assay (NSA) as a methodology that allows to efficiently isolate, expand, and differentiate somatic NSCs derived from the postnatal and adult forebrain periventricular region while preserving proliferation, self-renewal, and multipotency, the main attributes that provide their functional identification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gage FH, Temple S (2013) Neural stem cells: generating and regenerating the brain. Neuron 80:588–601

    Article  CAS  PubMed  Google Scholar 

  2. Kokaia Z, Lindvall O (2003) Neurogenesis after ischaemic brain insults. Curr Opin Neurobiol 13:127–132

    Article  CAS  PubMed  Google Scholar 

  3. Lipp HP, Bonfanti L (2016) Adult neurogenesis in mammals: variations and confusions. Brain Behav Evol 87:205–221

    Article  PubMed  Google Scholar 

  4. Quinones-Hinojosa A, Sanai N, Soriano-Navarro M, Gonzalez-Perez O, Mirzadeh Z, Gil-Perotin S, Romero-Rodriguez R, Berger MS, Garcia-Verdugo JM, Alvarez-Buylla A (2006) Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J Comp Neurol 494:415–434

    Article  PubMed  Google Scholar 

  5. Paredes MF, Sorrells SF, Garcia-Verdugo JM, Alvarez-Buylla A (2016) Brain size and limits to adult neurogenesis. J Comp Neurol 524:646–664

    Article  PubMed  Google Scholar 

  6. Sorrells SF, Paredes MF, Cebrian-Silla A, Sandoval K, Qi D, Kelley KW, James D, Mayer S, Chang J, Auguste KI et al (2018) Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 555(7696):377–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Obernier K, Alvarez-Buylla A (2019) Neural stem cells: origin, heterogeneity and regulation in the adult mammalian brain. Developement 146(4) pii: dev156059

    Google Scholar 

  8. Mizrak D, Levitin HM, Delgado AC, Crotet V, Yuan J, Chaker Z, Silva-Vargas V, Sims PA, Doetsch F (2019) Single-cell analysis of regional differences in adult V-SVZ neural stem cell lineages. Cell Rep 26(2):394–406.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kilpatrick TJ, Bartlett PF (1993) Cloning and growth of multipotential neural precursors: requirements for proliferation and differentiation. Neuron 10:255–265

    Article  CAS  PubMed  Google Scholar 

  10. Palmer TD, Ray J, Gage FH (1995) FGF-2-responsive neuronal progenitors reside in proliferative and quiescent regions of the adult rodent brain. Mol Cell Neurosci 6:474–486

    Article  CAS  PubMed  Google Scholar 

  11. Vescovi AL, Reynolds BA, Fraser DD, Weiss S (1993) bFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells. Neuron 11:951–966

    Article  CAS  PubMed  Google Scholar 

  12. Weiss S, Dunne C, Hewson J, Wohl C, Wheatley M, Peterson AC, Reynolds BA (1996) Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci 16:7599–7609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gritti A, Dal Molin M, Foroni C, Bonfanti L, Molin MD, Foroni C, Bonfanti L, Dal Molin M, Foroni C, Bonfanti L (2009) Effects of developmental age, brain region, and time in culture on long-term proliferation and multipotency of neural stem cell populations. J Comp Neurol 517:333–349

    Article  PubMed  Google Scholar 

  14. Gritti A, Bonfanti L, Doetsch F, Caille I, Alvarez-Buylla A, Lim DA, Galli R, Verdugo JM, Herrera DG, Vescovi AL (2002) Multipotent neural stem cells reside into the rostral extension and olfactory bulb of adult rodents. J Neurosci 22:437–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Neri M, Ricca A, Di Girolamo I, Alcala’-Franco B, Cavazzin C, Orlacchio A, Martino S, Naldini L, Gritti A, Alcala’-Franco B et al (2011) Neural stem cell gene therapy ameliorates pathology and function in a mouse model of globoid cell leukodystrophy. Stem Cells 29:1559–1571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ornaghi F, Sala D, Tedeschi F, Maffia MC, Bazzucchi M, Morena F, Valsecchi M, Aureli M, Martino S, Gritti A (2019) Novel bicistronic lentiviral vectors correct β-hexosaminidase deficiency in neural and hematopoietic stem cells and progeny: implications for in vivo end ex vivo gene therapy of GM2 gangliosidosis. Neurobiol Dis 134:104667

    Article  PubMed  CAS  Google Scholar 

  17. Pluchino S, Quattrini A, Brambilla E, Gritti A, Salani G, Dina G, Galli R, Del Carro U, Amadio S, Bergami A et al (2003) Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 422:688–694

    Article  CAS  PubMed  Google Scholar 

  18. Givogri MI, Bottai D, Zhu HL, Fasano S, Lamorte G, Brambilla R, Vescovi A, Wrabetz L, Bongarzone E (2008) Multipotential neural precursors transplanted into the metachromatic leukodystrophy brain fail to generate oligodendrocytes but contribute to limit brain dysfunction. Dev Neurosci 30:340–357

    Article  CAS  PubMed  Google Scholar 

  19. Lee JP, Jeyakumar M, Gonzalez R, Takahashi H, Lee PJ, Baek RC, Clark D, Rose H, Fu G, Clarke J et al (2007) Stem cells act through multiple mechanisms to benefit mice with neurodegenerative metabolic disease. Nat Med 13:439–447

    Article  CAS  PubMed  Google Scholar 

  20. Pluchino S, Zanotti L, Brambilla E, Rovere-Querini P, Capobianco A, Alfaro-Cervello C, Salani G, Cossetti C, Borsellino G, Battistini L et al (2009) Immune regulatory neural stem/precursor cells protect from central nervous system autoimmunity by restraining dendritic cell function. PLoS One 4:e5959

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Ben-Hur T, Einstein O, Mizrachi-Kol R, Ben-Menachem O, Reinhartz E, Karussis D, Abramsky O (2003) Transplanted multipotential neural precursor cells migrate into the inflamed white matter in response to experimental autoimmune encephalomyelitis. Glia 41:73–80

    Article  PubMed  Google Scholar 

  22. Bacigaluppi M, Pluchino S, Martino G, Kilic E, Hermann DM (2008) Neural stem/precursor cells for the treatment of ischemic stroke. J Neurol Sci 265:73–77

    Article  CAS  PubMed  Google Scholar 

  23. Ricca A, Rufo N, Ungari S, Morena F, Martino S, Kulik W, Alberizzi V, Bolino A, Bianchi F, Del Carro U et al (2015) Combined gene/cell therapies provide long-term and pervasive rescue of multiple pathological symptoms in a murine model of globoid cell leukodystrophy. Hum Mol Genet., pii: ddv08:3372–3389

    Google Scholar 

  24. Reynolds BA, Tetzlaff W, Weiss S (1992) A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 12:4565–4574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710

    Article  CAS  PubMed  Google Scholar 

  26. Gritti A, Galli R, Vescovi AL, Galli R, Gritti A, Galli R, Vescovi AL (2008) Clonal analyses and cryopreservation of neural stem cell cultures. Methods Mol Biol 438:173–184

    Article  CAS  PubMed  Google Scholar 

  27. Galli R, Gritti A, Bonfanti L, Vescovi AL (2003) Neural stem cells: an overview. Circ Res 92:598–608

    Article  CAS  PubMed  Google Scholar 

  28. Louis SA, Rietze RL, Deleyrolle L, Wagey RE, Thomas TE, Eaves AC, Reynolds BA (2008) Enumeration of neural stem and progenitor cells in the neural colony-forming cell assay. Stem Cells 26:988–996

    Article  PubMed  Google Scholar 

  29. Galli R, Fiocco R, De Filippis L, Muzio L, Gritti A, Mercurio S, Broccoli V, Pellegrini M, Mallamaci A, Vescovi AL (2002) Emx2 regulates the proliferation of stem cells of the adult mammalian central nervous system. Development 129:1633–1644

    Article  CAS  PubMed  Google Scholar 

  30. Weiner LP. Definitions and criteria for stem cells. Methods Mol Biol. 2008;438:3–8. https://doi.org/10.1007/978-1-59745-133-8_1. PMID: 18369744

  31. Reynolds BA, Rietze RL (2005) Neural stem cells and neurospheres—re-evaluating the relationship. Nat Methods 2:333–336

    Article  CAS  PubMed  Google Scholar 

  32. Santambrogio S, Ricca A, Maderna C, Ieraci A, Aureli M, Sonnino S, Kulik W, Aimar P, Bonfanti L, Martino S et al (2012) The galactocerebrosidase enzyme contributes to maintain a functional neurogenic niche during early post-natal CNS development. Hum Mol Genet 21:4732–4750

    Article  CAS  PubMed  Google Scholar 

  33. Pituch KC, Moyano AL, Lopez-Rosas A, Marottoli FM, Li G, Hu C, Van Breemen R, Månsson JE, Givogri MI (2015) Dysfunction of platelet-derived growth factor receptor α (PDGFRα) represses the production of oligodendrocytes from arylsulfatase A-deficient multipotential neural precursor cells. J Biol Chem 290:7040–7053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Alessio N, Riccitiello F, Squillaro T, Capasso S, Del Gaudio S, Di Bernardo G, Cipollaro M, Melone MAB, Peluso G, Galderisi U (2018) Neural stem cells from a mouse model of Rett syndrome are prone to senescence, show reduced capacity to cope with genotoxic stress, and are impaired in the differentiation process. Exp Mol Med 50(3):1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Zordan P, Cominelli M, Cascino F, Tratta E, Poliani PL, Galli R (2018) Tuberous sclerosis complex-associated CNS abnormalities depend on hyperactivation of mTORC1 and Akt. J Clin Invest 128(4):1688–1706

    Article  PubMed  PubMed Central  Google Scholar 

  36. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi A (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021

    Article  CAS  PubMed  Google Scholar 

  37. Corno D, Pala M, Cominelli M, Cipelletti B, Leto K, Croci L, Barili V, Brandalise F, Melzi R, Di Gregorio A et al (2012) Gene signatures associated with mouse postnatal hindbrain neural stem cells and medulloblastoma cancer stem cells identify novel molecular mediators and predict human medulloblastoma molecular classification. Cancer Discov 2(6):554–568

    Article  PubMed  CAS  Google Scholar 

  38. Hemmesi K, Squadrito ML, Mestdagh P, Conti V, Cominelli M, Piras IS, Sergi LS, Piccinin S, Maestro R, Poliani PL et al (2015) MiR-135a inhibits cancer stem cell-driven medulloblastoma development by directly repressing Arhgef6 expression. Stem Cells 33(5):1377–1389

    Article  CAS  PubMed  Google Scholar 

  39. Cusimano M, Biziato D, Brambilla E, Donega M, Alfaro-Cervello C, Snider S, Salani G, Pucci F, Comi G, Garcia-Verdugo JM et al (2012) Transplanted neural stem/precursor cells instruct phagocytes and reduce secondary tissue damage in the injured spinal cord. Brain 135:447–460

    Article  PubMed  Google Scholar 

  40. Giusto E, Donega M, Cossetti C, Pluchino S (2014) Neuro-immune interactions of neural stem cell transplants: from animal disease models to human trials. Exp Neurol 260C:19–32

    Article  CAS  Google Scholar 

  41. Vescovi ALL, Parati EAA, Gritti A, Poulin P, Ferrario M, Wanke E, Frölichsthal-Schoeller P, Cova L, Arcellana-Panlilio M, Colombo A et al (1999) Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation. Exp Neurol 156:71–83

    Article  CAS  PubMed  Google Scholar 

  42. Carpenter MK, Cui X, Hu ZY, Jackson J, Sherman S, Seiger A, Wahlberg LU (1999) In vitro expansion of a multipotent population of human neural progenitor cells. Exp Neurol 158:265–278

    Article  CAS  PubMed  Google Scholar 

  43. Svendsen CN, Caldwell MA, Ostenfeld T (1999) Human neural stem cells: isolation, expansion and transplantation. Brain Pathol 9:499–513

    Article  CAS  PubMed  Google Scholar 

  44. Rota Nodari L, Ferrari D, Giani F, Bossi M, Rodriguez-Menendez V, Tredici G, Delia D, Vescovi AL, De Filippis L (2010) Long-term survival of human neural stem cells in the ischemic rat brain upon transient immunosuppression. PLoS One 5:e14035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Pluchino S, Gritti A, Blezer E, Amadio S, Brambilla E, Borsellino G, Cossetti C, Del Carro U, Comi G, t Hart B et al (2009) Human neural stem cells ameliorate autoimmune encephalomyelitis in non-human primates. Ann Neurol 66:343–354

    Article  CAS  PubMed  Google Scholar 

  46. Klein SM, Behrstock S, McHugh J, Hoffmann K, Wallace K, Suzuki M, Aebischer P, Svendsen CN (2005) GDNF delivery using human neural progenitor cells in a rat model of ALS. Hum Gene Ther 16:509–521

    Article  CAS  PubMed  Google Scholar 

  47. McBride JL, Behrstock SP, Chen EY, Jakel RJ, Siegel I, Svendsen CN, Kordower JH (2004) Human neural stem cell transplants improve motor function in a rat model of Huntington’s disease. J Comp Neurol 475:211–219

    Article  PubMed  Google Scholar 

  48. Mazzini L, Gelati M, Profico DC, Sorarù G, Ferrari D, Copetti M, Muzi G, Ricciolini C, Carletti S, Giorgi C et al (2019) Results from phase I clinical trial with Intraspinal injection of neural stem cells in amyotrophic lateral sclerosis: a long-term outcome. Stem Cells Transl Med 8(9):887–897

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ottoboni L, Merlini A, Martino G (2017) Neural stem cell plasticity: advantages in therapy for the injured central nervous system. Front Cell Dev Biol 5:52

    Article  PubMed  PubMed Central  Google Scholar 

  50. Azari H, Rahman M, Sharififar S, Reynolds BA (2010) Isolation and expansion of the adult mouse neural stem cells using the neurosphere assay. J Vis Exp (45) pii: 2393

    Google Scholar 

  51. Peruzzotti-Jametti L, Bernstock JD, Vicario N, Costa ASH, Kwok CK, Leonardi T, Booty LM, Bicci I, Balzarotti B, Volpe G et al (2018) Macrophage-derived extracellular succinate licenses neural stem cells to suppress chronic Neuroinflammation. Cell Stem Cell 22(3):355–368.e13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Martino S, Di Girolamo I, Cavazzin C, Tiribuzi R, Galli R, Rivaroli A, Valsecchi M, Sandhoff K, Sonnino S, Vescovi A et al (2009) Neural precursor cell cultures from GM2 gangliosidosis animal models recapitulate the biochemical and molecular hallmarks of the brain pathology. J Neurochem 109:135–147

    Article  CAS  PubMed  Google Scholar 

  53. Aureli M, Gritti A, Bassi R, Loberto N, Ricca A, Chigorno V, Prinetti A, Sonnino S (2012) Plasma membrane-associated glycohydrolases along differentiation of murine neural stem cells. Neurochem Res 37:1344–1354

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Gritti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ricca, A., Cascino, F., Gritti, A. (2022). Isolation and Culture of Neural Stem/Progenitor Cells from the Postnatal Periventricular Region. In: Deleyrolle, L.P. (eds) Neural Progenitor Cells. Methods in Molecular Biology, vol 2389. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1783-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1783-0_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1782-3

  • Online ISBN: 978-1-0716-1783-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics