Skip to main content

Advancing Our Understanding of Brain Disorders: Research Using Postmortem Brain Tissue

  • Protocol
  • First Online:
Neural Progenitor Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2389))

  • 1189 Accesses

Abstract

It is thought that proliferative potential of neural progenitor cells, from postmortem tissue obtained from idiopathic PD patients, present in the substantia nigra (SN) as well as other brain regions can be maintained in vitro. While they might be lacking in factors required for differentiation into mature neurons, their regenerative potential is undeniable and suggestive that progenitor cells are found endogenously in the diseased brain. Adult stem/progenitor cells exist in several regions within the PD brain and are likely a valuable source of progenitor cells for understanding disease course, as well as useful tools for generating potential cellular and pharmacologic therapies. One successful therapy for some PD patients is deep brain stimulation (DBS) and has been used for more than a decade to treat PD; however its mechanism of action remains unknown. Given the close proximity of the electrode trajectory to areas of the brain known as the “germinal niches” and the Parkinsonian brain’s regenerative potential, it is possible that DBS influences neural stem cell proliferation locally, as well as distally. A study of banked brain tissue from idiopathic PD patients treated with DBS, compared to 12 control brains without CNS disease, identified a significant increase in the number of proliferating precursor cells in the subventricular zone (SVZ) of the lateral ventricles, the third ventricle, and the tissue surrounding the DBS lead. Our studies with banked human tissues from the aforementioned regions demonstrate the importance of studying brain-banked tissue from germinal niches and DBS perielectrode tissue. We reveal in these studies the presence of proliferative potential in diseased brains as well as an increase in cellular plasticity in the brain as a consequence of DBS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kretzschmar H (2009) Brain banking: opportunities, challenges and meaning for the future. Nat Rev Neurosci 10:70–78

    Article  CAS  Google Scholar 

  2. Arias-Carrion O, Freundlieb N, Oertel WH, Hoglinger GU (2007) Adult neurogenesis and Parkinson's disease. CNS Neurol Disord Drug Targets 6:326–335

    Article  CAS  Google Scholar 

  3. Baquet ZC, Bickford PC, Jones KR (2005) Brain-derived neurotrophic factor is required for the establishment of the proper number of dopaminergic neurons in the substantia nigra pars compacta. J Neurosci 25:6251–6259

    Article  CAS  Google Scholar 

  4. Geraerts M, Krylyshkina O, Debyser Z, Baekelandt V (2007) Concise review: therapeutic strategies for Parkinson disease based on the modulation of adult neurogenesis. Stem Cells 25:263–270

    Article  CAS  Google Scholar 

  5. Preynat-Seauve O, Burkhard PR, Villard J, Zingg W, Ginovart N, Feki A, Dubois-Dauphin M, Hurst SA, Mauron A, Jaconi M, Krause KH (2009) Pluripotent stem cells as new drugs? The example of Parkinson’s disease. Int J Pharm 381:113–121

    Article  CAS  Google Scholar 

  6. Lie DC, Dziewczapolski G, Willhoite AR, Kaspar BK, Shults CW, Gage FH (2002) The adult substantia nigra contains progenitor cells with neurogenic potential. J Neurosci 22:6639–6649

    Article  CAS  Google Scholar 

  7. Srivastava AS, Malhotra R, Sharp J, Berggren T (2008) Potentials of ES cell therapy in neurodegenerative diseases. Curr Pharm Des 14:3873–3879

    Article  CAS  Google Scholar 

  8. Walton NM, Sutter BM, Chen HX, Chang LJ, Roper SN, Scheffler B, Steindler DA (2006) Derivation and large-scale expansion of multipotent astroglial neural progenitors from adult human brain. Development 133:3671–3681

    Article  CAS  Google Scholar 

  9. Storch A, Sabolek M, Milosevic J, Schwarz SC, Schwarz J (2004) Midbrain-derived neural stem cells: from basic science to therapeutic approaches. Cell Tissue Res 318:15–22

    Article  Google Scholar 

  10. Benabid AL, Chabardes S, Mitrofanis J, Pollak P (2009) Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol 8:67–81

    Article  Google Scholar 

  11. Dostrovsky JO, Levy R, Wu JP, Hutchison WD, Tasker RR, Lozano AM (2000) Microstimulation-induced inhibition of neuronal firing in human globus pallidus. J Neurophysiol 84:570–574

    Article  CAS  Google Scholar 

  12. Halpern C, Hurtig H, Jaggi J, Grossman M, Won M, Baltuch G (2007) Deep brain stimulation in neurologic disorders. Parkinsonism Relat Disord 13:1–16

    Article  Google Scholar 

  13. Curtis MA, Penney EB, Pearson AG, van Roon-Mom WM, Butterworth NJ, Dragunow M, Connor B, Faull RL (2003) Increased cell proliferation and neurogenesis in the adult human Huntington's disease brain. Proc Natl Acad Sci U S A 100:9023–9027

    Article  CAS  Google Scholar 

  14. Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    Article  CAS  Google Scholar 

  15. Low VF, Dragunow M, Tippett LJ, Faull RL, Curtis MA (2011) No change in progenitor cell proliferation in the hippocampus in Huntington's disease. Neuroscience 199:577–588

    Article  CAS  Google Scholar 

  16. Curtis MA, Faull RL, Eriksson PS (2007) The effect of neurodegenerative diseases on the subventricular zone. Nat Rev Neurosci 8:712–723

    Article  CAS  Google Scholar 

  17. Curtis MA, Faull RL, Glass M (2006) A novel population of progenitor cells expressing cannabinoid receptors in the subependymal layer of the adult normal and Huntington’s disease human brain. J Chem Neuroanat 31:210–215

    Article  CAS  Google Scholar 

  18. Curtis MA, Penney EB, Pearson J, Dragunow M, Connor B, Faull RL (2005) The distribution of progenitor cells in the subependymal layer of the lateral ventricle in the normal and Huntington’s disease human brain. Neuroscience 132:777–788

    Article  CAS  Google Scholar 

  19. Hoglinger GU, Rizk P, Muriel MP, Duyckaerts C, Oertel WH, Caille I, Hirsch EC (2004) Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci 7:726–735

    Article  Google Scholar 

  20. Jin K, Minami M, Lan JQ, Mao XO, Batteur S, Simon RP, Greenberg DA (2001) Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci U S A 98:4710–4715

    Article  CAS  Google Scholar 

  21. Jin K, Peel AL, Mao XO, Xie L, Cottrell BA, Henshall DC, Greenberg DA (2004) Increased hippocampal neurogenesis in Alzheimer’s disease. Proc Natl Acad Sci U S A 101:343–347

    Article  CAS  Google Scholar 

  22. Jin K, Wang X, Xie L, Mao XO, Zhu W, Wang Y, Shen J, Mao Y, Banwait S, Greenberg DA (2006) Evidence for stroke-induced neurogenesis in the human brain. Proc Natl Acad Sci U S A 103:13198–13202

    Article  CAS  Google Scholar 

  23. Nait-Oumesmar B, Picard-Riera N, Kerninon C, Decker L, Seilhean D, Hoglinger GU, Hirsch EC, Reynolds R, Baron-Van Evercooren A (2007) Activation of the subventricular zone in multiple sclerosis: evidence for early glial progenitors. Proc Natl Acad Sci U S A 104:4694–4699

    Article  CAS  Google Scholar 

  24. Lozano AM (2001) Deep brain stimulation for Parkinson’s disease. Parkinsonism Relat Disord 7:199–203

    Article  Google Scholar 

  25. Vedam-Mai V, Gardner B, Okun MS, Siebzehnrubl FA, Kam M, Aponso P, Steindler DA, Yachnis AT, Neal D, Oliver BU, Rath SJ, Faull RL, Reynolds BA, Curtis MA (2014) Increased precursor cell proliferation after deep brain stimulation for Parkinson's disease: a human study. PLoS One 9:e88770

    Article  Google Scholar 

  26. DeLong MR, Wichmann T (2001) Deep brain stimulation for Parkinson's disease. Ann Neurol 49:142–143

    Article  CAS  Google Scholar 

  27. Castrioto A, Lozano AM, Poon YY, Lang AE, Fallis M, Moro E (2011) Ten-year outcome of subthalamic stimulation in Parkinson disease: a blinded evaluation. Arch Neurol 68:1550–1556

    Article  Google Scholar 

  28. Okun MS, Foote KD (2010) Parkinson’s disease DBS: what, when, who and why? The time has come to tailor DBS targets. Expert Rev Neurother 10:1847–1857

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinata Vedam-Mai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Curtis, M.A., Vedam-Mai, V. (2022). Advancing Our Understanding of Brain Disorders: Research Using Postmortem Brain Tissue . In: Deleyrolle, L.P. (eds) Neural Progenitor Cells. Methods in Molecular Biology, vol 2389. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1783-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1783-0_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1782-3

  • Online ISBN: 978-1-0716-1783-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics