Skip to main content

Generating Cerebral Organoids from Human Pluripotent Stem Cells

Part of the Methods in Molecular Biology book series (MIMB,volume 2389)

Abstract

3D brain organoids derived from human pluripotent stem cells (hPSCs) possess the remarkable ability to self-organize and differentiate into tissue resembling the early human fetal brain. Brain organoids provide a powerful tool for studying human brain development and disease in an in vitro system. Here we describe a protocol for the differentiation of hPSCs to human cerebral organoids using a commercially available kit (STEMdiff™ Cerebral Organoid Kit) and discuss methods to scale up the protocol in a high-throughput manner.

Key words

  • Brain
  • Three-dimensional
  • Organoid
  • Neurodevelopment
  • In vitro
  • Neural differentiation
  • Stem cells

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-1783-0_15
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-1783-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lancaster MA, Knoblich JA (2014) Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345:1247125

    PubMed  CrossRef  CAS  Google Scholar 

  2. Watanabe K, Kamiya D, Nishiyama A, Katayama T, Nozaki S, Kawasaki H, Watanabe Y, Mizuseki K, Sasai Y (2005) Directed differentiation of telencephalic precursors from embryonic stem cells. Nat Neurosci 8:288–296

    CAS  PubMed  CrossRef  Google Scholar 

  3. Eiraku M, Watanabe K, Matsuo-Takasaki M, Kawada M, Yonemura S, Matsumura M, Wataya T, Nishiyama A, Muguruma K, Sasai Y (2008) Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3:519–532

    CAS  PubMed  CrossRef  Google Scholar 

  4. Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, Sekiguchi K, Adachi T, Sasai Y (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472:51–56

    CAS  PubMed  CrossRef  Google Scholar 

  5. Nakano T, Ando S, Takata N, Kawada M, Muguruma K, Sekiguchi K, Saito K, Yonemura S, Eiraku M, Sasai Y (2012) Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10:771–785

    CAS  PubMed  CrossRef  Google Scholar 

  6. Kadoshima T, Sakaguchi H, Nakano T, Soen M, Ando S, Eiraku M, Sasai Y (2013) Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. Proc Natl Acad Sci U S A 110:20284–20289

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  7. Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, Homfray T, Penninger JM, Jackson AP, Knoblich JA (2013) Cerebral organoids model human brain development and microcephaly. Nature 501:373–379

    CAS  PubMed  CrossRef  Google Scholar 

  8. Lancaster MA, Knoblich JA (2014) Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc 9:2329–2340

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  9. Quadrato G, Nguyen T, Macosko EZ, Sherwood JL, Min Yang S, Berger DR, Maria N, Scholvin J, Goldman M, Kinney JP, Boyden ES, Lichtman JW, Williams ZM, McCarroll SA, Arlotta P (2017) Cell diversity and network dynamics in photosensitive human brain organoids. Nature 545:48–53

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  10. Paşca AM, Sloan SA, Clarke LE, Tian Y, Makinson CD, Huber N, Kim CH, Park JY, O'Rourke NA, Nguyen KD, Smith SJ, Huguenard JR, Geschwind DH, Barres BA, Paşca SP (2015) Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat Methods 12:671–678

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  11. Qian X, Nguyen HN, Song MM, Hadiono C, Ogden SC, Hammack C, Yao B, Hamersky GR, Jacob F, Zhong C, Yoon KJ, Jeang W, Lin L, Li Y, Thakor J, Berg DA, Zhang C, Kang E, Chickering M, Nauen D, Ho CY, Wen Z, Christian KM, Shi PY, Maher BJ, Wu H, Jin P, Tang H, Song H, Ming GL (2016) Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165:1238–1254

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  12. Qian X, Jacob F, Song MM, Nguyen HN, Song H, Ming GL (2018) Generation of human brain region-specific organoids using a miniaturized spinning bioreactor. Nat Protoc 13:565–580

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  13. Bagley JA, Reumann D, Bian S, Lévi-Strauss J, Knoblich JA (2017) Fused cerebral organoids model interactions between brain regions. Nat Methods 14:743–751

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  14. Birey F, Andersen J, Makinson CD, Islam S, Wei W, Huber N, Fan HC, Metzler KRC, Panagiotakos G, Thom N, O'Rourke NA, Steinmetz LM, Bernstein JA, Hallmayer J, Huguenard JR, Paşca SP (2017) Assembly of functionally integrated human forebrain spheroids. Nature 545:54–59

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  15. Xiang Y, Tanaka Y, Patterson B, Kang YJ, Govindaiah G, Roselaar N, Cakir B, Kim KY, Lombroso AP, Hwang SM, Zhong M, Stanley EG, Elefanty AG, Naegele JR, Lee SH, Weissman SM, Park IH (2017) Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration. Cell Stem Cell 21(383–98):e7

    Google Scholar 

  16. Jo J, Xiao Y, Sun AX, Cukuroglu E, Tran HD, Göke J, Tan ZY, Saw TY, Tan CP, Lokman H, Lee Y, Kim D, Ko HS, Kim SO, Park JH, Cho NJ, Hyde TM, Kleinman JE, Shin JH, Weinberger DR, Tan EK, Je HS, Ng HH (2016) Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons. Cell Stem Cell 19:248–257

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  17. Monzel AS, Smits LM, Hemmer K, Hachi S, Moreno EL, van Wuellen T, Jarazo J, Walter J, Brüggemann I, Boussaad I, Berger E, Fleming RMT, Bolognin S, Schwamborn JC (2017) Derivation of human midbrain-specific organoids from neuroepithelial stem cells. Stem Cell Reports 8:1144–1154

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  18. Sakaguchi H, Kadoshima T, Soen M, Narii N, Ishida Y, Ohgushi M, Takahashi J, Eiraku M, Sasai Y (2015) Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived dorsomedial telencephalic tissue. Nat Commun 6:8896

    CAS  PubMed  CrossRef  Google Scholar 

  19. Ozone C, Suga H, Eiraku M, Kadoshima T, Yonemura S, Takata N, Oiso Y, Tsuji T, Sasai Y (2016) Functional anterior pituitary generated in self-organizing culture of human embryonic stem cells. Nat Commun 7:10351

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  20. Muguruma K, Nishiyama A, Kawakami H, Hashimoto K, Sasai Y (2015) Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells. Cell Rep 10(4):537–550

    CAS  PubMed  CrossRef  Google Scholar 

  21. Renner M, Lancaster MA, Bian S, Choi H, Ku T, Peer A, Chung K, Knoblich JA (2017) Self-organized developmental patterning and differentiation in cerebral organoids. EMBO J 36:1316–1329

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  22. Camp JG, Badsha F, Florio M, Kanton S, Gerber T, Wilsch-Bräuninger M, Lewitus E, Sykes A, Hevers W, Lancaster M, Knoblich JA, Lachmann R, Pääbo S, Huttner WB, Treutlein B (2015) Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc Natl Acad Sci U S A 112:15672–15677

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  23. Luo C, Lancaster MA, Castanon R, Nery JR, Knoblich JA, Ecker JR (2016) Cerebral organoids recapitulate epigenomic signatures of the human fetal brain. Cell Rep 17:3369–3384

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  24. Velasco S, Kedaigle AJ, Simmons SK, Nash A, Rocha M, Quadrato G, Paulsen B, Nguyen L, Adiconis X, Regev A, Levin JZ, Arlotta P (2019) Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature 570:523–527

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  25. Bhaduri A, Andrews MG, Mancia Leon W, Jung D, Shin D, Allen D, Jung D, Schmunk G, Haeussler M, Salma J, Pollen AA, Nowakowski TJ, Kriegstein AR (2020) Cell stress in cortical organoids impairs molecular subtype specification. Nature 578:142–148

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  26. Di Lullo E, Kriegstein AR (2017) The use of brain organoids to investigate neural development and disease. Nat Rev Neurosci 18:573–584

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  27. Koo B, Choi B, Park H, Yoon KJ (2019) Past, present, and future of brain organoid technology. Mol Cells 42:617–627

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Tian A, Muffat J, Li Y (2020) Studying human neurodevelopment and diseases using 3D brain organoids. J Neurosci 40:1186–1193

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  29. Amin ND, Paşca SP (2018) Building models of brain disorders with three-dimensional organoids. Neuron 100:389–405

    CAS  PubMed  CrossRef  Google Scholar 

  30. Mora-Bermúdez F, Badsha F, Kanton S, Camp JG, Vernot B, Köhler K, Voigt B, Okita K, Maricic T, He Z, Lachmann R, Pääbo S, Treutlein B, Huttner WB (2016) Differences and similarities between human and chimpanzee neural progenitors during cerebral cortex development. Elife 5:e18683

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  31. Kanton S, Boyle MJ, He Z, Santel M, Weigert A, Sanchís-Calleja F, Guijarro P, Sidow L, Fleck JS, Han D, Qian Z, Heide M, Huttner WB, Khaitovich P, Pääbo S, Treutlein B, Camp JG (2019) Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature 574:418–422

    CAS  PubMed  CrossRef  Google Scholar 

  32. Bershteyn M, Nowakowski TJ, Pollen AA, Di Lullo E, Nene A, Wynshaw-Boris A, Kriegstein AR (2017) Human iPSC-derived cerebral organoids model cellular features of lissencephaly and reveal prolonged mitosis of outer radial glia. Cell Stem Cell 20(435–49):e4

    Google Scholar 

  33. Iefremova V, Manikakis G, Krefft O, Jabali A, Weynans K, Wilkens R, Marsoner F, Brändl B, Müller FJ, Koch P, Ladewig J (2017) An organoid-based model of cortical development identifies non-cell-autonomous defects in Wnt signaling contributing to miller-Dieker syndrome. Cell Rep 19:50–59

    CAS  PubMed  CrossRef  Google Scholar 

  34. Cugola FR, Fernandes IR, Russo FB, Freitas BC, Dias JL, Guimarães KP, Benazzato C, Almeida N, Pignatari GC, Romero S, Polonio CM, Cunha I, Freitas CL, Brandão WN, Rossato C, Andrade DG, Faria Dde P, Garcez AT, Buchpigel CA, Braconi CT, Mendes E, Sall AA, Zanotto PM, Peron JP, Muotri AR, Beltrão-Braga PC (2016) The Brazilian Zika virus strain causes birth defects in experimental models. Nature 534:267–271

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  35. Garcez PP, Loiola EC, Madeiro da Costa R, Higa LM, Trindade P, Delvecchio R, Nascimento JM, Brindeiro R, Tanuri A, Rehen SK (2016) Zika virus impairs growth in human neurospheres and brain organoids. Science 352:816–818

    CAS  PubMed  CrossRef  Google Scholar 

  36. Bian S, Repic M, Guo Z, Kavirayani A, Burkard T, Bagley JA, Krauditsch C, Knoblich JA (2018) Genetically engineered cerebral organoids model brain tumor formation. Nat Methods 15:631–639

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  37. Ogawa J, Pao GM, Shokhirev MN, Verma IM (2018) Glioblastoma model using human cerebral organoids. Cell Rep 23:1220–1229

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  38. Takebe T, Wells JM, Helmrath MA, Zorn AM (2018) Organoid center strategies for accelerating clinical translation. Cell Stem Cell 22:806–809

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  39. Choudhury D, Ashok A, Naing MW (2020) Commercialization of organoids. Trends Mol Med 26(3):245–249

    PubMed  CrossRef  Google Scholar 

  40. Lancaster MA, Corsini NS, Wolfinger S, Gustafson EH, Phillips AW, Burkard TR, Otani T, Livesey FJ, Knoblich JA (2017) Guided self-organization and cortical plate formation in human brain organoids. Nat Biotechnol 35:659–666

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  41. Shi SR, Cote RJ, Taylor CR (1997) Antigen retrieval immunohistochemistry: past, present, and future. J Histochem Cytochem 45:327–343

    CAS  PubMed  CrossRef  Google Scholar 

  42. Qian X, Su Y, Adam CD, Deutschmann AU, Pather SR, Goldberg EM, Su K, Li S, Lu L, Jacob F, Nguyen PTT, Huh S, Hoke A, Swinford-Jackson SE, Wen Z, Gu X, Pierce RC, Wu H, Briand LA, Chen HI, Wolf JA, Song H, Ming GL (2020) Sliced human cortical organoids for modeling distinct cortical layer formation. Cell Stem Cell 26(5):766–781.e9

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

Download references

Acknowledgments

We’d like to thank Marianne Chomiak for her feedback on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin Knock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Chew, L., Añonuevo, A., Knock, E. (2022). Generating Cerebral Organoids from Human Pluripotent Stem Cells. In: Deleyrolle, L.P. (eds) Neural Progenitor Cells. Methods in Molecular Biology, vol 2389. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1783-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1783-0_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1782-3

  • Online ISBN: 978-1-0716-1783-0

  • eBook Packages: Springer Protocols