Skip to main content

Isolation and Purification of Self-Renewable Human Neural Stem Cells from iPSCs for Cell Therapy in Experimental Model of Ischemic Stroke

Part of the Methods in Molecular Biology book series (MIMB,volume 2389)

Abstract

Neural stem cell therapy has been galvanized by the discovery of pluripotent stem cells. The possibility to generate specialized central nervous system-specific differentiated cells using human somatic cells engineered to become induced pluripotent stem cells (iPSCs) was a game changer. This technology has broad applications in the field of regenerative medicine, in vitro disease modeling, targeted drug discovery, and precision medicine. Currently, iPSCs are one of the most promising cell sources amenable for commercialization and off-the-shelf neural stem cell therapy products. iPSCs exhibit a strong self-renewable ability that supports the development of a virtually unlimited source of neural cells for structural repair in neurological disorders. However, along with this strong proliferative capacity of iPSCs comes the tumorigenic potential of these cells after transplantation. Thus, the isolation and purification of a homogeneous population of human neural stem cells (hNSCs) are of paramount importance to ensure consistency in the composition of the cellular product and to avoid tumor formation in the host brain. This chapter describes the isolation, neuralization, and long-term perpetuation of hNSCs derived from iPSCs through the use of specific growth medium and the preparation of hNSCs for transplantation in an experimental model of stroke. Additionally, we will describe methods to analyze the ischemic stroke and size of grafts using magnetic resonance imaging and OsiriX software and neuroanatomical tracing procedures to study axonal remodeling after ischemic stroke and cell transplantation.

Key words

  • Induced pluripotent stem cells
  • Neural stem cells
  • Ischemic stroke
  • Cell therapy

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-1783-0_14
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-1783-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mozaffarian D et al (2016) Heart disease and stroke Statistics-2016 update: a report from the American Heart Association. Circulation 133:e38

    PubMed  Google Scholar 

  2. Roger VL et al (2012) Executive summary: heart disease and stroke statistics--2012 update: a report from the American Heart Association. Circulation 125:188

    CrossRef  Google Scholar 

  3. Minino AM, Murphy SL, Xu J, Kochanek KD (2011) Deaths: final data for 2008. Natl Vital Stat Rep 59:1

    PubMed  Google Scholar 

  4. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8:963

    CAS  CrossRef  Google Scholar 

  5. Parent JM, Vexler ZS, Gong C, Derugin N, Ferriero DM (2002) Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann Neurol 52:802

    CrossRef  Google Scholar 

  6. Zhang RL, Zhang ZG, Zhang L, Chopp M (2001) Proliferation and differentiation of progenitor cells in the cortex and the subventricular zone in the adult rat after focal cerebral ischemia. Neuroscience 105:33

    CAS  CrossRef  Google Scholar 

  7. Zhang R et al (2004) Stroke transiently increases subventricular zone cell division from asymmetric to symmetric and increases neuronal differentiation in the adult rat. J Neurosci 24:5810

    CAS  CrossRef  Google Scholar 

  8. Jin K et al (2001) Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci U S A 98:4710

    CAS  CrossRef  Google Scholar 

  9. Jin K et al (2003) Directed migration of neuronal precursors into the ischemic cerebral cortex and striatum. Mol Cell Neurosci 24:171

    CAS  CrossRef  Google Scholar 

  10. Zhang R et al (2004) Activated neural stem cells contribute to stroke-induced neurogenesis and neuroblast migration toward the infarct boundary in adult rats. J Cereb Blood Flow Metab 24:441

    CrossRef  Google Scholar 

  11. STEPS (2009) Stem cell therapies as an emerging paradigm in stroke (STEPS): bridging basic and clinical science for cellular and neurogenic factor therapy in treating stroke. Stroke 40(510)

    Google Scholar 

  12. Borlongan CV et al (1997) Neural transplantation as an experimental treatment modality for cerebral ischemia. Neurosci Biobehav Rev 21:79

    CAS  CrossRef  Google Scholar 

  13. Lindvall O, Kokaia Z (2011) Stem cell research in stroke: how far from the clinic? Stroke 42(8):2369–2375

    CrossRef  Google Scholar 

  14. Takahashi K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861

    CAS  CrossRef  Google Scholar 

  15. Daadi MM, Maag AL, Steinberg GK (2008) Adherent self-renewable human embryonic stem cell-derived neural stem cell line: functional engraftment in experimental stroke model. PLoS One 3:e1644

    CrossRef  Google Scholar 

  16. Daadi MM (2011) Novel paths towards neural cellular products for neurological disorders. Regen Med 6:25

    CAS  CrossRef  Google Scholar 

  17. M. M. Daadi et al. (2008), Mutipotent neural derivatives from human embryonic stem cells functionally engraft in animal model of pediatric hypoxic-ischemic brain injury. Society for Neuroscience Abstracts 38th 703, 8

    Google Scholar 

  18. Daadi MM et al (2016) Optogenetic stimulation of neural grafts enhances neurotransmission and downregulates the inflammatory response in experimental stroke model. Cell Transplant 25:1371

    CrossRef  Google Scholar 

  19. Elkabetz Y et al (2008) Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes Dev 22:152

    CAS  CrossRef  Google Scholar 

  20. Koch P, Opitz T, Steinbeck JA, Ladewig J, Brustle O (2009) A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration. Proc Natl Acad Sci U S A 106:3225

    CAS  CrossRef  Google Scholar 

  21. Bain G, Kitchens D, Yao M, Huettner JE, Gottlieb DI (1995) Embryonic stem cells express neuronal properties in vitro. Dev Biol 168:342

    CAS  CrossRef  Google Scholar 

  22. Okabe S, Forsberg-Nilsson K, Spiro AC, Segal M, McKay RD (1996) Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech Dev 59:89

    CAS  CrossRef  Google Scholar 

  23. Carpenter MK et al (2001) Enrichment of neurons and neural precursors from human embryonic stem cells. Exp Neurol 172:383

    CAS  CrossRef  Google Scholar 

  24. Daadi MM (2019) Differentiation of neural stem cells derived from induced pluripotent stem cells into dopaminergic neurons. Methods Mol Biol 1919:89

    CAS  CrossRef  Google Scholar 

  25. Daadi MM (2019) Generation of neural stem cells from induced pluripotent stem cells. Methods Mol Biol 1919:1

    CAS  CrossRef  Google Scholar 

  26. Daadi MM et al (2009) Molecular and magnetic resonance imaging of human embryonic stem cell-derived neural stem cell grafts in ischemic rat brain. Mol Ther 17:1282

    CAS  CrossRef  Google Scholar 

  27. Ying QL, Stavridis M, Griffiths D, Li M, Smith A (2003) Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 21:183

    CAS  CrossRef  Google Scholar 

  28. Zhang SC, Wernig M, Duncan ID, Brustle O, Thomson JA (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 19:1129

    CAS  CrossRef  Google Scholar 

  29. Schulz TC et al (2003) Directed neuronal differentiation of human embryonic stem cells. BMC Neurosci 4:27

    CrossRef  Google Scholar 

  30. Cho MS et al (2008) Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci U S A 105:3392

    CAS  CrossRef  Google Scholar 

  31. Daadi MM et al (2009) Functional engraftment of the medial ganglionic eminence cells in experimental stroke model. Cell Transplant 18:815

    CrossRef  Google Scholar 

  32. Perrier AL et al (2004) Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci U S A 101:12543

    CAS  CrossRef  Google Scholar 

  33. Tabar V et al (2005) Migration and differentiation of neural precursors derived from human embryonic stem cells in the rat brain. Nat Biotechnol 23:601

    CAS  CrossRef  Google Scholar 

  34. Pera MF et al (2004) Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin. J Cell Sci 117:1269

    CAS  CrossRef  Google Scholar 

  35. Itsykson P et al (2005) Derivation of neural precursors from human embryonic stem cells in the presence of noggin. Mol Cell Neurosci 30:24

    CAS  CrossRef  Google Scholar 

  36. Reubinoff BE et al (2001) Neural progenitors from human embryonic stem cells. Nat Biotechnol 19:1134

    CAS  CrossRef  Google Scholar 

  37. Gerrard L, Rodgers L, Cui W (2005) Differentiation of human embryonic stem cells to neural lineages in adherent culture by blocking bone morphogenetic protein signaling. Stem Cells 23:1234

    CAS  CrossRef  Google Scholar 

  38. Nat R et al (2007) Neurogenic neuroepithelial and radial glial cells generated from six human embryonic stem cell lines in serum-free suspension and adherent cultures. Glia 55:385

    CrossRef  Google Scholar 

  39. Shin S et al (2006) Long-term proliferation of human embryonic stem cell-derived neuroepithelial cells using defined adherent culture conditions. Stem Cells 24:125

    CrossRef  Google Scholar 

  40. Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84

    CAS  CrossRef  Google Scholar 

  41. Frank JA et al (2002) Magnetic intracellular labeling of mammalian cells by combining (FDA-approved) superparamagnetic iron oxide MR contrast agents and commonly used transfection agents. Acad Radiol 9(Suppl 2):S484

    CrossRef  Google Scholar 

  42. Castaneda RT, Khurana A, Khan R, Daldrup-Link HE (2011) Labeling stem cells with ferumoxytol, an FDA-approved iron oxide nanoparticle. J Vis Exp 4:e3482

    Google Scholar 

Download references

Acknowledgments

This work was supported by Neoneuron LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel M. Daadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Daadi, M.M. (2022). Isolation and Purification of Self-Renewable Human Neural Stem Cells from iPSCs for Cell Therapy in Experimental Model of Ischemic Stroke . In: Deleyrolle, L.P. (eds) Neural Progenitor Cells. Methods in Molecular Biology, vol 2389. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1783-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1783-0_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1782-3

  • Online ISBN: 978-1-0716-1783-0

  • eBook Packages: Springer Protocols