Skip to main content

The Role of Ligand Rebinding and Facilitated Dissociation on the Characterization of Dissociation Rates by Surface Plasmon Resonance (SPR) and Benchmarking Performance Metrics

  • 344 Accesses

Part of the Methods in Molecular Biology book series (MIMB,volume 2385)

Abstract

Surface plasmon resonance (SPR) is a real-time kinetic measurement principle that can probe the kinetic interactions between ligands and their binding sites, and lies at the backbone of pharmaceutical, biosensing, and biomolecular research. The extraction of dissociation rates from SPR-response signals often relies on several commonly adopted assumptions, one of which is the exponential decay of the dissociation part of the response signal. However, certain conditions, such as high density of binding sites or high concentration fluctuations near the surface as compared to the bulk, can lead to non-exponential decays via ligand rebinding or facilitated dissociation. Consequently, fitting the data with an exponential function can underestimate or overestimate the measured dissociation rates. Here, we describe a set of alternative fit functions that can take such effects into consideration along with plasmonic sensor design principles with key performance metrics, thereby suggesting methods for error-free high-precision extraction of the dissociation rates.

Key words

  • Off-rate
  • Binding kinetics
  • Facilitated dissociation
  • Dissociation
  • Plasmonic sensors
  • Surface chemistry

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-1767-0_11
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-1767-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Karlsson R (2004) SPR for molecular interaction analysis: a review of emerging application areas. J Mol Recognit 17(3):151–161. https://doi.org/10.1002/jmr.660

    CAS  CrossRef  PubMed  Google Scholar 

  2. Inci F, Saylan Y, Kojouri AM, Ogut MG, Denizli A, Demirci U (2020) A disposable microfluidic-integrated hand-held plasmonic platform for protein detection. Appl Mater Today 18:100478. https://doi.org/10.1016/j.apmt.2019.100478

    CrossRef  Google Scholar 

  3. Saylan Y, Denizli A (2018) Molecular fingerprints of hemoglobin on a nanofilm chip. Sensors 18(9):3016. https://doi.org/10.3390/s18093016

    CAS  CrossRef  PubMed Central  Google Scholar 

  4. Li Z, Leustean L, Inci F, Zheng M, Demirci U, Wang S (2019) Plasmonic-based platforms for diagnosis of infectious diseases at the point-of-care. Biotechnol Adv 37(8):107440. https://doi.org/10.1016/j.biotechadv.2019.107440

    CAS  CrossRef  PubMed  Google Scholar 

  5. Tokel O, Inci F, Demirci U (2014) Advances in plasmonic technologies for point of care applications. Chem Rev 114(11):5728–5752. https://doi.org/10.1021/cr4000623

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  6. Inci F, Tokel O, Wang S, Gurkan UA, Tasoglu S, Kuritzkes DR, Demirci U (2013) Nanoplasmonic quantitative detection of intact viruses from unprocessed whole blood. ACS Nano 7(6):4733–4745. https://doi.org/10.1021/nn3036232

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  7. McDonnell JM (2001) Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition. Curr Opin Chem Biol 5(5):572–577. https://doi.org/10.1016/S1367-5931(00)00251-9

    CAS  CrossRef  PubMed  Google Scholar 

  8. Saylan Y, Erdem Ö, Cihangir N, Denizli A (2019) Detecting fingerprints of waterborne bacteria on a sensor. Chemosensors 7(3):33. https://doi.org/10.3390/chemosensors7030033

    CAS  CrossRef  Google Scholar 

  9. Inci F, Celik U, Turken B, Özer HÖ, Kok FN (2015) Construction of P-glycoprotein incorporated tethered lipid bilayer membranes. Biochem Biophys Reports 2:115–122. https://doi.org/10.1016/j.bbrep.2015.05.012

    CrossRef  Google Scholar 

  10. de Mol NJ, Fischer MJE (2010) Surface Plasmon resonance: methods and protocols. Humana Press, Totowa, New Jersey. https://doi.org/10.1007/978-1-60761-670-2

    CrossRef  Google Scholar 

  11. Gopalakrishnan M, Forsten-Williams K, Cassino TR, Padro L, Ryan TE, Täuber UC (2005) Ligand rebinding: self-consistent mean-field theory and numerical simulations applied to surface plasmon resonance studies. Eur Biophys J 34:943–958. https://doi.org/10.1007/s00249-005-0471-2

    CAS  CrossRef  PubMed  Google Scholar 

  12. Erbaş A, de la Cruz MO, Marko JF (2019) Receptor-ligand rebinding kinetics in confinement. Biophys J 116(9):1609–1624. https://doi.org/10.1016/j.bpj.2019.02.033

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  13. Gopalakrishnan M, Forsten-Williams K, Nugent MA, Täuber UC (2005) Effects of receptor clustering on ligand dissociation kinetics: theory and simulations. Biophys J 89(6):3686–3700. https://doi.org/10.1529/biophysj.105.065300

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  14. Carroll J, Raum M, Forsten-Williams K, Täuber UC (2016) Ligand-receptor binding kinetics in surface plasmon resonance cells: a Monte Carlo analysis. Phys Biol 13(6):066010. https://doi.org/10.1088/1478-3975/13/6/066010

    CAS  CrossRef  PubMed  Google Scholar 

  15. Murray JB, Roughley SD, Matassova N, Brough PA (2014) Off-rate screening (ORS) by surface plasmon resonance. An efficient method to kinetically sample hit to lead chemical space from unpurified reaction products. J Med Chem 57(7):2845–2850. https://doi.org/10.1021/jm401848a

    CAS  CrossRef  PubMed  Google Scholar 

  16. Erbaş A, Marko JF (2019) How do DNA-bound proteins leave their binding sites? The role of facilitated dissociation. Curr Opin Chem Biol 53:118–124. https://doi.org/10.1016/j.cbpa.2019.08.007

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  17. Kamar RI, Banigan EJ, Erbas A, Giuntoli RD, de la Cruz MO, Johnson RC, Marko JF (2017) Facilitated dissociation of transcription factors from single DNA binding sites. Proc Natl Acad Sci U S A 114(16):E3251–E3257. https://doi.org/10.1073/pnas.1701884114

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  18. Lewis JS, Spenkelink LM, Jergic S, Wood EA, Monachino E, Horan NP, Duderstadt KE, Cox MM, Robinson A, Dixon NE, van Oijen AM (2017) Single-molecule visualization of fast polymerase turnover in the bacterial replisome. Elife 6:e23932. https://doi.org/10.7554/eLife.23932

    CrossRef  PubMed  PubMed Central  Google Scholar 

  19. Erbaş A, De La Cruz MO, Marko JF (2018) Effects of electrostatic interactions on ligand dissociation kinetics. Phys Rev E 97(2):022405. https://doi.org/10.1103/PhysRevE.97.022405

    CrossRef  PubMed  PubMed Central  Google Scholar 

  20. Berg HC (1984) Random walks in biology – new and expanded edition. Princeton University Press, Princeton, New Jersey. ISBN: 9780691000640

    CrossRef  Google Scholar 

  21. Sing CE, De La Cruz MO, Marko JF (2014) Multiple-binding-site mechanism explains concentration-dependent unbinding rates of DNA-binding proteins. Nucleic Acids Res 42(6):3783–3791. https://doi.org/10.1093/nar/gkt1327

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  22. Graham JS, Johnson RC, Marko JF (2011) Concentration-dependent exchange accelerates turnover of proteins bound to double-stranded DNA. Nucleic Acids Res 39(6):2249–2259. https://doi.org/10.1093/nar/gkq1140

    CAS  CrossRef  PubMed  Google Scholar 

  23. Oh SH, Altug H (2018) Performance metrics and enabling technologies for nanoplasmonic biosensors. Nat Commun 9:5263. https://doi.org/10.1038/s41467-018-06419-3

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  24. Li X, Husson SM (2006) Adsorption of dansylated amino acids on molecularly imprinted surfaces: a surface plasmon resonance study. Biosens Bioelectron 22(3):336–348. https://doi.org/10.1016/j.bios.2006.04.016

    CAS  CrossRef  PubMed  Google Scholar 

  25. Rocha MS (2015) Extracting physical chemistry from mechanics: a new approach to investigate DNA interactions with drugs and proteins in single molecule experiments. Integr Biol 7(9):967–986. https://doi.org/10.1039/c5ib00127g

    CAS  CrossRef  Google Scholar 

  26. Dibekkaya H, Saylan Y, Yılmaz F, Derazshamshir A, Denizli A (2016) Surface plasmon resonance sensors for real-time detection of cyclic citrullinated peptide antibodies. J Macromol Sci Part A Pure Appl Chem 53(9):585–594. https://doi.org/10.1080/10601325.2016.1201756

    CAS  CrossRef  Google Scholar 

  27. Langmuir I (1916) The constitution and fundamental properties of solids and liquids. Part I. Solids. J Am Chem Soc 38(11):2221–2295. https://doi.org/10.1021/ja02268a002

    CAS  CrossRef  Google Scholar 

  28. Fornstedt T, Forssén P, Samuelsson J (2013) Modeling of preparative liquid chromatography. Liq Chromatogr:573–592. https://doi.org/10.1016/B978-0-12-805393-5.00024-5

  29. Saylan Y, Yılmaz F, Derazshamshir A, Yılmaz E, Denizli A (2017) Synthesis of hydrophobic nanoparticles for real-time lysozyme detection using surface plasmon resonance sensor. J Mol Recognit 30(9):e2631. https://doi.org/10.1002/jmr.2631

    CAS  CrossRef  Google Scholar 

  30. Dahlin AB, Wittenberg NJ, Höök F, Oh SH (2013) Promises and challenges of nanoplasmonic devices for refractometric biosensing. Nanophotonics 2(2):83–101. https://doi.org/10.1515/nanoph-2012-0026

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  31. Oliverio M, Perotto S, Messina GC, Lovato L, De Angelis F (2017) Chemical functionalization of plasmonic surface biosensors: a tutorial review on issues, strategies, and costs. ACS Appl Mater Interfaces 9(35):29394–29411. https://doi.org/10.1021/acsami.7b0158

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  32. Jung Y, Jeong JY, Chung BH (2008) Recent advances in immobilization methods of antibodies on solid supports. Analyst 133:697–701. https://doi.org/10.1039/B800014J

    CAS  CrossRef  PubMed  Google Scholar 

  33. Reimhult E, Höök F (2015) Design of surface modifications for nanoscale sensor applications. Sensors 15(1):1635–1675. https://doi.org/10.3390/s150101635

    CrossRef  PubMed  PubMed Central  Google Scholar 

  34. Saylan Y, Erdem Ö, Inci F, Denizli A (2020) Advances in biomimetic systems for molecular recognition and biosensing. Biomimetics 5(2):20. https://doi.org/10.3390/biomimetics5020020

    CAS  CrossRef  PubMed Central  Google Scholar 

  35. Kalia J, Raines R (2010) Advances in bioconjugation. Curr Org Chem 14(2):138–147. https://doi.org/10.2174/138527210790069839

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  36. Ouellette D, Alessandri L, Chin A, Grinnell C, Tarcsa E, Radziejewski C, Correia I (2010) Studies in serum support rapid formation of disulfide bond between unpaired cysteine residues in the VH domain of an immunoglobulin G1 molecule. Anal Biochem 397(1):37–47. https://doi.org/10.1016/j.ab.2009.09.027

    CAS  CrossRef  PubMed  Google Scholar 

  37. Algar WR (2011) The controlled display of biomolecules on nanoparticles: a challenge suited to bioorthogonal chemistry. Bioconjug Chem 22(5):825–858. https://doi.org/10.1021/bc200065z

    CAS  CrossRef  PubMed  Google Scholar 

  38. Karyakin AA, Presnova GV, Rubtsova MY, Egorov AM (2000) Oriented immobilization of antibodies onto the gold surfaces via their native thiol groups. Anal Chem 72(16):3805–3811. https://doi.org/10.1021/ac9907890

    CAS  CrossRef  PubMed  Google Scholar 

  39. Baba A, Taranekar P, Ponnapati RR, Knoll W, Advincula RC (2010) Electrochemical surface plasmon resonance and waveguide-enhanced glucose biosensing with N-alkylaminated polypyrrole/glucose oxidase multilayers. ACS Appl Mater Interfaces 2(8):2347–2354. https://doi.org/10.1021/am100373v

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  40. Choi Y, Jeong Y, Chung H, Ito E, Hara M, Noh J (2008) Formation of ordered self-assembled monolayers by adsorption of octylthiocyanates on Au(111). Langmuir 24(1):91–96. https://doi.org/10.1021/la701302g

    CAS  CrossRef  PubMed  Google Scholar 

  41. Cossaro A, Dell’Angela M, Verdini A, Puppin M, Kladnik G, Coreno M, de Simone M, Kivimäki A, Cvetko D, Canepa D, Floreano L (2010) Amine functionalization of gold surfaces: ultra high vacuum deposition of cysteamine on Au(111). J Phys Chem C 114(35):15011–15014. https://doi.org/10.1021/jp104824c

    CAS  CrossRef  Google Scholar 

  42. Wang S, Esfahani M, Gurkan UA, Inci F, Kuritzkes DR, Demirci U (2012) Efficient on-chip isolation of HIV subtypes. Lab Chip 12(8):1508–1515. https://doi.org/10.1039/C2LC20706K

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  43. Leng C, Hung HC, Sun S, Wang D, Li Y, Jiang S, Chen Z (2015) Probing the surface hydration of nonfouling zwitterionic and peg materials in contact with proteins. ACS Appl Mater Interfaces 7(30):16881–16888. https://doi.org/10.1021/acsami.5b05627

    CAS  CrossRef  PubMed  Google Scholar 

  44. Jiang S, Cao Z (2010) Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mater 22(9):920–932. https://doi.org/10.1002/adma.200901407

    CAS  CrossRef  PubMed  Google Scholar 

  45. Lin PH, Li BR (2020) Antifouling strategies in advanced electrochemical sensors and biosensors. Analyst 145:1110–1120. https://doi.org/10.1039/C9AN02017A

    CAS  CrossRef  PubMed  Google Scholar 

  46. Leung BO, Yang Z, Wu SSH, Chou KC (2012) Role of interfacial water on protein adsorption at cross-linked polyethylene oxide interfaces. Langmuir 28(13):5724–5728. https://doi.org/10.1021/la204805x

    CAS  CrossRef  PubMed  Google Scholar 

  47. Galvin CJ, Dimitriou MD, Satija SK, Genzer J (2014) Swelling of polyelectrolyte and polyzwitterion brushes by humid vapors. J Am Chem Soc 136(36):12737–12745. https://doi.org/10.1021/ja5065334

    CAS  CrossRef  PubMed  Google Scholar 

  48. Tran H, Killops KL, Campos LM (2013) Advancements and challenges of patterning biomolecules with sub-50 nm features. Soft Matter 9:6578–6586. https://doi.org/10.1039/C3SM00149K

    CAS  CrossRef  Google Scholar 

  49. Huang M, Galarreta BC, Artar A, Adato R, Aksu S, Altug H (2012) Reusable nanostencils for creating multiple biofunctional molecular nanopatterns on polymer substrate. Nano Lett 12(9):4817–4822. https://doi.org/10.1021/nl302266u

    CAS  CrossRef  PubMed  Google Scholar 

  50. Mataji-Kojouri A, Ozen MO, Shahabadi M, Inci F, Demirci U (2020) Entangled nanoplasmonic cavities for estimating thickness of surface-adsorbed layers. ACS Nano 14(7):8518–8527. https://doi.org/10.1021/acsnano.0c02797

    CAS  CrossRef  PubMed  Google Scholar 

  51. Zareie HM, Boyer C, Bulmus V, Nateghi E, Davis TP (2008) Temperature-responsive self-assembled monolayers of oligo(ethylene glycol): control of biomolecular recognition. ACS Nano 2(4):757–765. https://doi.org/10.1021/nn800076h

    CAS  CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aykut Erbaş or Fatih Inci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Erbaş, A., Inci, F. (2022). The Role of Ligand Rebinding and Facilitated Dissociation on the Characterization of Dissociation Rates by Surface Plasmon Resonance (SPR) and Benchmarking Performance Metrics. In: Vanhaelen, Q. (eds) Computational Methods for Estimating the Kinetic Parameters of Biological Systems. Methods in Molecular Biology, vol 2385. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1767-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1767-0_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1766-3

  • Online ISBN: 978-1-0716-1767-0

  • eBook Packages: Springer Protocols