Skip to main content
Book cover

Oxytocin pp 247–255Cite as

Use of Cocultures to Measure the Blood–Brain Barrier Permeability of Oxytocin

Part of the Methods in Molecular Biology book series (MIMB,volume 2384)

Abstract

Primary monkey brain capillary endothelial cell cultures, with rat pericytes and astrocytes, provide an assay system for predicting the ability of oxytocin (OT) to cross the blood–brain barrier (BBB), using a commercially available in vitro BBB kit. The integrity of the in vitro “BBB,” which has a high transendothelial electrical resistance (TEER), can be established approximately 4 days after preparations for experiments. Dominant endothelial transport of OT is from the upper (luminal blood side) to lower (abluminal brain side) chambers, dose-dependently. OT is transported by the receptor for advanced glycation end-products (RAGE) in endothelial cells, which is evidenced using the RAGE knockdown system with short hairpin RNA (shRNA) treatment. This in vitro assay system is useful for further assessment of OT transport across the BBB.

Key words

  • Oxytocin
  • Transport
  • Blood–brain barrier (BBB)
  • Receptor for advanced glycation end-products (RAGE)
  • Endothelial cells
  • Knockdown
  • Flow cytometry

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-1759-5_15
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-1759-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Rilling JK, Young LJ (2014) The biology of mammalian parenting and its effect on offspring social development. Science 345:771–776

    CrossRef  CAS  Google Scholar 

  2. Dulac C, O’Connell LA, Wu Z (2014) Neural control of maternal and paternal behaviors. Science 345:765–770

    CrossRef  CAS  Google Scholar 

  3. Higashida H et al (2019) Social interaction improved by oxytocin in the subclass of autism with comorbid intellectual disabilities. Diseases 7(1):24

    CrossRef  CAS  Google Scholar 

  4. Horta M, Kaylor K, Feifel D, Ebner NC (2020) Chronic oxytocin administration as a tool for investigation and treatment: A cross-disciplinary systematic review. Neurosci Biobehav Rev 108:1–23

    CrossRef  CAS  Google Scholar 

  5. Munesue T, Nakamura H, Kikuchi M, Miura Y, Takeuchi N, Anme T et al (2016) Oxytocin for male subjects with autism spectrum disorder and comorbid intellectual disabilities: A randomized pilot study. Front Psych 7:2

    Google Scholar 

  6. Owada K, Okada T, Munesue T, Kuroda M, Fujioka T, Uno Y et al (2019) Quantitative facial expression analysis revealed the efficacy and time course of oxytocin in autism. Brain 142(7):2127–2136

    Google Scholar 

  7. Parker KJ, Oztan O, Libove RA, Sumiyoshi RD, Jackson LP, Karhson DS et al (2017) Intranasal oxytocin treatment for social deficits and biomarkers of response in children with autism. Proc Natl Acad Sci U S A 114(30):8119–8124

    CrossRef  CAS  Google Scholar 

  8. Kosaka H, Okamoto Y, Munesue T, Yamasue H, Inohara K, Fujioka T et al (2016) Oxytocin efficacy is modulated by dosage and oxytocin receptor genotype in young adults with high-functioning autism: a 24-week randomized clinical trial. Transl Psychiatry 6(8):e872

    Google Scholar 

  9. Yamamoto Y, Higashida H (2020) RAGE regulates oxytocin transport into the brain. Commun Biol 3(1):70

    CrossRef  Google Scholar 

  10. Neumann ID, Maloumby R, Beiderbeck DI, Lukas M, Landgraf R (2013) Increased brain and plasma oxytocin after nasal and peripheral administration in rats and mice. Psychoneuroendocrinology 38:1985–1993

    CrossRef  CAS  Google Scholar 

  11. Higashida H et al (2020) CD38, CD157, and RAGE as molecular determinants for social behavior. Cell 9(1):62

    CrossRef  Google Scholar 

  12. Yamamoto Y, Liang M, Munesue S, Deguchi K, Harashima A, Furuhara K (2019) Vascular RAGE transports oxytocin into the brain to elicit its maternal bonding behaviour in mice. Commun Biol 2:76

    CrossRef  Google Scholar 

  13. Higashida H et al (2017) Intestinal transepithelial permeability of oxytocin into the blood is dependent on the receptor for advanced glycation end products in mice. Sci Rep 7:7883

    CrossRef  Google Scholar 

  14. Yamamoto Y, Yamamoto H (2013) RAGE-mediated inflammation, type 2 diabetes, and diabetic vascular complication. Front Endocrinol (Lausanne) 4:105

    CrossRef  Google Scholar 

  15. Egaña-Gorroño L, López-Díez R, Yepuri G, Ramirez LS, Reverdatto S, Gugger PF et al (2020) Receptor for advanced glycation end products (rage) and mechanisms and therapeutic opportunities in diabetes and cardiovascular disease: insights from human subjects and animal models. Front Cardiovasc Med 7:37

    CrossRef  Google Scholar 

  16. Bagchi S, Chhibber T, Lahooti B, Verma A, Borse V, Jayant RD (2019) In-vitro blood-brain barrier models for drug screening and permeation studies: an overview. Drug Des Devel Ther 13:3591–3605

    CrossRef  CAS  Google Scholar 

  17. Nakagawa S, Deli MA, Nakao S, Honda M, Hayashi K, Nakaoke R et al (2007) Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells. Cell Mol Neurobiol 27(6):687–694

    CrossRef  CAS  Google Scholar 

  18. Myint KM, Yamamoto Y, Doi T, Kato I, Harashima A, Yonekura H et al (2006) RAGE control of diabetic nephropathy in a mouse model: effects of RAGE gene disruption and administration of low-molecular weight heparin. Diabetes 55(9):2510–2522

    CrossRef  CAS  Google Scholar 

  19. Shimizu Y, Harashima A, Munesue S, Oishi M, Hattori T, Hori O et al (2020) Neuroprotective effects of endogenous secretory receptor for advanced glycation end-products in brain ischemia. Aging Dis 11(3):547–558

    CrossRef  Google Scholar 

Download references

Acknowledgments

We acknowledge financial supports from the Kanazawa University SAKIGAKE project 2018 and Takeda Science Foundation, Japan. We thank the Grants-in-Aid for Scientific Research (24590375, 25461335 and 18K06889) and Program for Fostering Globally Talented Researchers from the Japan Society for Promotion of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yasuhiko Yamamoto or Haruhiro Higashida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Yamamoto, Y., Harashima, A., Munesue, Si., Higashida, H. (2022). Use of Cocultures to Measure the Blood–Brain Barrier Permeability of Oxytocin. In: Werry, E.L., Reekie, T.A., Kassiou, M. (eds) Oxytocin. Methods in Molecular Biology, vol 2384. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1759-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1759-5_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1758-8

  • Online ISBN: 978-1-0716-1759-5

  • eBook Packages: Springer Protocols