Skip to main content

Use of Cocultures to Measure the Blood–Brain Barrier Permeability of Oxytocin

  • Protocol
  • First Online:
Oxytocin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2384))

Abstract

Primary monkey brain capillary endothelial cell cultures, with rat pericytes and astrocytes, provide an assay system for predicting the ability of oxytocin (OT) to cross the blood–brain barrier (BBB), using a commercially available in vitro BBB kit. The integrity of the in vitro “BBB,” which has a high transendothelial electrical resistance (TEER), can be established approximately 4 days after preparations for experiments. Dominant endothelial transport of OT is from the upper (luminal blood side) to lower (abluminal brain side) chambers, dose-dependently. OT is transported by the receptor for advanced glycation end-products (RAGE) in endothelial cells, which is evidenced using the RAGE knockdown system with short hairpin RNA (shRNA) treatment. This in vitro assay system is useful for further assessment of OT transport across the BBB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rilling JK, Young LJ (2014) The biology of mammalian parenting and its effect on offspring social development. Science 345:771–776

    Article  CAS  Google Scholar 

  2. Dulac C, O’Connell LA, Wu Z (2014) Neural control of maternal and paternal behaviors. Science 345:765–770

    Article  CAS  Google Scholar 

  3. Higashida H et al (2019) Social interaction improved by oxytocin in the subclass of autism with comorbid intellectual disabilities. Diseases 7(1):24

    Article  CAS  Google Scholar 

  4. Horta M, Kaylor K, Feifel D, Ebner NC (2020) Chronic oxytocin administration as a tool for investigation and treatment: A cross-disciplinary systematic review. Neurosci Biobehav Rev 108:1–23

    Article  CAS  Google Scholar 

  5. Munesue T, Nakamura H, Kikuchi M, Miura Y, Takeuchi N, Anme T et al (2016) Oxytocin for male subjects with autism spectrum disorder and comorbid intellectual disabilities: A randomized pilot study. Front Psych 7:2

    Google Scholar 

  6. Owada K, Okada T, Munesue T, Kuroda M, Fujioka T, Uno Y et al (2019) Quantitative facial expression analysis revealed the efficacy and time course of oxytocin in autism. Brain 142(7):2127–2136

    Google Scholar 

  7. Parker KJ, Oztan O, Libove RA, Sumiyoshi RD, Jackson LP, Karhson DS et al (2017) Intranasal oxytocin treatment for social deficits and biomarkers of response in children with autism. Proc Natl Acad Sci U S A 114(30):8119–8124

    Article  CAS  Google Scholar 

  8. Kosaka H, Okamoto Y, Munesue T, Yamasue H, Inohara K, Fujioka T et al (2016) Oxytocin efficacy is modulated by dosage and oxytocin receptor genotype in young adults with high-functioning autism: a 24-week randomized clinical trial. Transl Psychiatry 6(8):e872

    Google Scholar 

  9. Yamamoto Y, Higashida H (2020) RAGE regulates oxytocin transport into the brain. Commun Biol 3(1):70

    Article  Google Scholar 

  10. Neumann ID, Maloumby R, Beiderbeck DI, Lukas M, Landgraf R (2013) Increased brain and plasma oxytocin after nasal and peripheral administration in rats and mice. Psychoneuroendocrinology 38:1985–1993

    Article  CAS  Google Scholar 

  11. Higashida H et al (2020) CD38, CD157, and RAGE as molecular determinants for social behavior. Cell 9(1):62

    Article  Google Scholar 

  12. Yamamoto Y, Liang M, Munesue S, Deguchi K, Harashima A, Furuhara K (2019) Vascular RAGE transports oxytocin into the brain to elicit its maternal bonding behaviour in mice. Commun Biol 2:76

    Article  Google Scholar 

  13. Higashida H et al (2017) Intestinal transepithelial permeability of oxytocin into the blood is dependent on the receptor for advanced glycation end products in mice. Sci Rep 7:7883

    Article  Google Scholar 

  14. Yamamoto Y, Yamamoto H (2013) RAGE-mediated inflammation, type 2 diabetes, and diabetic vascular complication. Front Endocrinol (Lausanne) 4:105

    Article  Google Scholar 

  15. Egaña-Gorroño L, López-Díez R, Yepuri G, Ramirez LS, Reverdatto S, Gugger PF et al (2020) Receptor for advanced glycation end products (rage) and mechanisms and therapeutic opportunities in diabetes and cardiovascular disease: insights from human subjects and animal models. Front Cardiovasc Med 7:37

    Article  Google Scholar 

  16. Bagchi S, Chhibber T, Lahooti B, Verma A, Borse V, Jayant RD (2019) In-vitro blood-brain barrier models for drug screening and permeation studies: an overview. Drug Des Devel Ther 13:3591–3605

    Article  CAS  Google Scholar 

  17. Nakagawa S, Deli MA, Nakao S, Honda M, Hayashi K, Nakaoke R et al (2007) Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells. Cell Mol Neurobiol 27(6):687–694

    Article  CAS  Google Scholar 

  18. Myint KM, Yamamoto Y, Doi T, Kato I, Harashima A, Yonekura H et al (2006) RAGE control of diabetic nephropathy in a mouse model: effects of RAGE gene disruption and administration of low-molecular weight heparin. Diabetes 55(9):2510–2522

    Article  CAS  Google Scholar 

  19. Shimizu Y, Harashima A, Munesue S, Oishi M, Hattori T, Hori O et al (2020) Neuroprotective effects of endogenous secretory receptor for advanced glycation end-products in brain ischemia. Aging Dis 11(3):547–558

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge financial supports from the Kanazawa University SAKIGAKE project 2018 and Takeda Science Foundation, Japan. We thank the Grants-in-Aid for Scientific Research (24590375, 25461335 and 18K06889) and Program for Fostering Globally Talented Researchers from the Japan Society for Promotion of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yasuhiko Yamamoto or Haruhiro Higashida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yamamoto, Y., Harashima, A., Munesue, Si., Higashida, H. (2022). Use of Cocultures to Measure the Blood–Brain Barrier Permeability of Oxytocin. In: Werry, E.L., Reekie, T.A., Kassiou, M. (eds) Oxytocin. Methods in Molecular Biology, vol 2384. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1759-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1759-5_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1758-8

  • Online ISBN: 978-1-0716-1759-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics