Skip to main content

Mitochondrial Targeting Probes, Drug Conjugates, and Gene Therapeutics

  • 1135 Accesses

Part of the Methods in Molecular Biology book series (MIMB,volume 2383)

Abstract

Mitochondria represent an important drug target for many phatology, including neurodegeneration, metabolic disease, heart failure, ischemia-reperfusion injury, and cancer. Mitochondrial dysfunctions are caused by mutation in mitochondrial DNA or in nuclear genes encoding mitochondrial proteins. Cell-penetrating peptides (CPPs) have been employed to overcome biological barriers, target this organelle, and therapeuticaly restore mitochondrial functions. Here, we describe recent methods used to deliver oligonucleotides targeting mitochondrial protein by using mitochondrial penetrating peptides. In particular, we highlight recent advances of formulated peptides/oligonucleotides nanocomplexes as a proof-of-principle for pharmaceutical form of peptide-based therapeutics.

Key words

  • mitFects
  • Intracellular delivery
  • Mitochondria
  • Nanocarriers
  • Nanoparticles

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-1752-6_27
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-1752-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55:1189–1193

    CAS  PubMed  Google Scholar 

  2. Green M, Loewenstein PM (1988) Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 55:1179–1188

    CAS  PubMed  Google Scholar 

  3. Vivès E, Brodin P, Lebleu B (1997) A truncated HIV-1 tat protein basic domain rapidly Translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272:16010–16017

    PubMed  Google Scholar 

  4. Derossi D, Joliot AH, Chassaing G et al (1994) The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 269:10444–10450

    CAS  PubMed  Google Scholar 

  5. Elliott G, Hare PO (1997) Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 88:223–233

    CAS  PubMed  Google Scholar 

  6. Pooga M, Hällbrink M, Zorko M et al (1998) Cell penetration by transportan. FASEB J 12:67–77

    CAS  PubMed  Google Scholar 

  7. Oehlke J, Scheller A, Wiesner B et al (1998) Cellular uptake of an alpha-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically. Biochem Biophys Acta 1414:127–139

    CAS  PubMed  Google Scholar 

  8. Lindgren M, Hällbrink M, Prochiantz A et al (2000) Cell-penetrating peptides. Trends Pharmacol Sci 21:99–103

    CAS  PubMed  Google Scholar 

  9. Futaki S, Suzuki T, Ohashi W et al (2001) Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 276:5836–5840

    CAS  PubMed  Google Scholar 

  10. Hudecz F, Bánóczi Z, Csík G (2005) Medium-sized peptides as built in carriers for biologically active compounds. Med Res Rev 25:679–736

    CAS  PubMed  Google Scholar 

  11. Stewart KM, Horton KL, Kelley SO (2008) Cell-penetrating peptides as delivery vehicles for biology and medicine. Org Biomol Chem 6:2242–2255

    CAS  PubMed  Google Scholar 

  12. Cerrato CP, Lehto T, Langel Ü (2014) Peptide-based vectors: recent developments. Biomol Concepts 5:479–488

    CAS  PubMed  Google Scholar 

  13. Cerrato CP, Veiman K-L, Langel Ü (2015) Advances in peptide delivery. Futur Sci:160–171

    Google Scholar 

  14. Gupta B, Levchenko T, Torchilin VP (2005) Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Adv Drug Deliv Rev 57:637–651

    CAS  PubMed  Google Scholar 

  15. Zhao M, Weissleder R (2004) Intracellular cargo delivery using tat peptide and derivatives. Med Res Rev 24:1–12

    PubMed  Google Scholar 

  16. Goun EA, Pillow TH, Jones LR et al (2006) Molecular transporters: synthesis of oligoguanidinium transporters and their application to drug delivery and real-time imaging. Chembiochem 7:1497–1515

    CAS  PubMed  Google Scholar 

  17. Koren E, Torchilin VP (2012) Cell-penetrating peptides: breaking through to the other side. Trends Mol Med 18:385–393

    CAS  PubMed  Google Scholar 

  18. Gros E, Deshayes S, Morris MC et al (2006) A non-covalent peptide-based strategy for protein and peptide nucleic acid transduction. Biochim Biophys Acta Biomembr 1758:384–393

    CAS  Google Scholar 

  19. Ezzat K, EL Andaloussi S, Abdo R et al (2010) Peptide-based matrices as drug delivery vehicles. Curr Pharm Des 16:1167–1178

    CAS  PubMed  Google Scholar 

  20. Dietz GPH, Bähr M (2004) Delivery of bioactive molecules into the cell: the Trojan horse approach. Mol Cell Neurosci 27:85–131

    CAS  PubMed  Google Scholar 

  21. Snyder EL, Dowdy SF (2005) Recent advances in the use of protein transduction domains for the delivery of peptides, proteins and nucleic acids invivo. Expert Opin Drug Deliv 2:43–51

    CAS  PubMed  Google Scholar 

  22. Kuai R, Yuan W, Li W et al (2011) Targeted delivery of cargoes into a murine solid tumor by a cell-penetrating peptide and cleavable poly(ethylene glycol) Comodified liposomal delivery system via systemic administration. Mol Pharm 8:2151–2161

    CAS  PubMed  Google Scholar 

  23. Abes S, Moulton HM, Clair P et al (2006) Vectorization of morpholino oligomers by the (R-Ahx-R)4 peptide allows efficient splicing correction in the absence of endosomolytic agents. J Control Release 116:304–313

    CAS  PubMed  Google Scholar 

  24. Boeneman K, Delehanty JB, Blanco-Canosa JB et al (2013) Selecting improved peptidyl motifs for cytosolic delivery of disparate protein and nanoparticle materials. ACS Nano 7:3778–3796

    CAS  PubMed  Google Scholar 

  25. Delehanty JB, Blanco-Canosa JB, Bradburne CE et al (2013) Site-specific cellular delivery of quantum dots with chemoselectively-assembled modular peptides. Chem Commun 49:7878

    CAS  Google Scholar 

  26. Oh E, Fatemi FK, Currie M et al (2013) PEGylated luminescent gold nanoclusters: synthesis, characterization, bioconjugation, and application to one- and two-photon cellular imaging. Part Part Syst Charact 30:453–466

    CAS  Google Scholar 

  27. Dekiwadia CD, Lawrie AC, Fecondo JV (2012) Peptide-mediated cell penetration and targeted delivery of gold nanoparticles into lysosomes. J Pept Sci 18:527–534

    CAS  PubMed  Google Scholar 

  28. Garnacho C, Serrano D, Muro S (2012) A fibrinogen-derived peptide provides intercellular adhesion molecule-1-specific targeting and intraendothelial transport of polymer nanocarriers in human cell cultures and mice. J Pharmacol Exp Ther 340:638–647

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Andaloussi SEL, Lehto T, Mäger I et al (2011) Design of a peptide-based vector , PepFect6 , for efficient delivery of siRNA in cell culture and systemically in vivo. Nucleic Acids Res 39:3972–3987

    PubMed  Google Scholar 

  30. Salaklang J, Steitz B, Finka A et al (2008) Superparamagnetic nanoparticles as a powerful systems biology characterization tool in the physiological context. Angew Chem Int Ed 47:7857–7860

    CAS  Google Scholar 

  31. Sharma S, Kotamraju VR, Mölder T et al (2017) Tumor-penetrating Nanosystem strongly suppresses breast tumor growth. Nano Lett 17:1356–1364

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Oh E, Delehanty JB, Sapsford KE et al (2011) Cellular uptake and fate of PEGylated gold nanoparticles is dependent on both cell-penetration peptides and particle size. ACS Nano 5:6434–6448

    CAS  PubMed  Google Scholar 

  33. Oliveira S, van Rooy I, Kranenburg O et al (2007) Fusogenic peptides enhance endosomal escape improving siRNA-induced silencing of oncogenes. Int J Pharm 331:211–214

    CAS  PubMed  Google Scholar 

  34. Pan L, He Q, Liu J et al (2012) Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J Am Chem Soc 134:5722–5725

    CAS  PubMed  Google Scholar 

  35. Matsuo K, Yoshikawa T, Oda A et al (2007) Efficient generation of antigen-specific cellular immunity by vaccination with poly(γ-glutamic acid) nanoparticles entrapping endoplasmic reticulum-targeted peptides. Biochem Biophys Res Commun 362:1069–1072

    CAS  PubMed  Google Scholar 

  36. Wang G, Norton AS, Pokharel D et al (2013) KDEL peptide gold nanoconstructs: promising nanoplatforms for drug delivery. Nanomedicine 9:366–374

    CAS  PubMed  Google Scholar 

  37. Sneh-Edri H, Likhtenshtein D, Stepensky D (2011) Intracellular targeting of PLGA nanoparticles encapsulating antigenic peptide to the endoplasmic reticulum of dendritic cells and its effect on antigen cross-presentation in vitro. Mol Pharm 8:1266–1275

    CAS  PubMed  Google Scholar 

  38. Ravindran S, Snee PT, Ramachandran A et al (2013) Acidic domain in dentin phosphophoryn facilitates cellular uptake: implications in targeted protein delivery. J Biol Chem 288:16098–16109

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Falanga A, Vitiello MT, Cantisani M et al (2011) A peptide derived from herpes simplex virus type 1 glycoprotein H: membrane translocation and applications to the delivery of quantum dots. Nanomedicine 7:925–934

    CAS  PubMed  Google Scholar 

  40. Morris MC, Vidal P, Chaloin L et al (1997) A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Res 25:2730–2736

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim BK, Kang H, Doh KO et al (2012) Homodimeric SV40 NLS peptide formed by disulfide bond as enhancer for gene delivery. Bioorg Med Chem Lett 22:5415–5418

    CAS  PubMed  Google Scholar 

  42. Pollard H, Remy JS, Loussouarn G et al (1998) Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus in mammalian cells. J Biol Chem 273:7507–7511

    CAS  PubMed  Google Scholar 

  43. Li S, Huang L (2000) Nonviral gene therapy: promises and challenges. Gene Ther 7:31–34

    CAS  PubMed  Google Scholar 

  44. Nabel GJ, Nabel EG, Yang Z et al (1993) Direct gene transfer with DNA-liposome complexes in melanoma: expression, biologic activity, and lack of toxicity in humans. Proc Natl Acad Sci 90:11307–11311

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Tkachenko AG, Xie H, Coleman D et al (2003) Multifunctional gold nanoparticle-peptide complexes for nuclear targeting. J Am Chem Soc 125:4700–4701

    CAS  PubMed  Google Scholar 

  46. Aronov O, Horowitz AT, Gabizon A et al (2004) Nuclear localization signal-targeted poly(ethylene glycol) conjugates as potential carriers and nuclear localizing agents for carboplatin analogues. Bioconjug Chem 15:814–823

    CAS  PubMed  Google Scholar 

  47. Wagstaff KM, Glover DJ, Tremethick DJ et al (2007) Histone-mediated transduction as an efficient means for gene delivery. Mol Ther 15:721–731

    CAS  PubMed  Google Scholar 

  48. Boelens J, Lust S, Offner F et al (2007) The endoplasmic reticulum: a target for new anticancer drugs. In Vivo 21:215–226

    CAS  PubMed  Google Scholar 

  49. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    CAS  PubMed  Google Scholar 

  50. Galluzzi L, Larochette N, Zamzami N et al (2006) Mitochondria as therapeutic targets for cancer chemotherapy. Oncogene 25:4812–4830

    CAS  PubMed  Google Scholar 

  51. Burchell VS, Gandhi S, Deas E et al (2010) Targeting mitochondrial dysfunction in neurodegenerative disease: part I. Expert Opin Ther Targets 14:497–511

    CAS  PubMed  Google Scholar 

  52. Burchell VS, Gandhi S, Deas E et al (2010) Targeting mitochondrial dysfunction in neurodegenerative disease: part II. Expert Opin Ther Targets 14:497–511

    CAS  PubMed  Google Scholar 

  53. Zhao K, Zhao G-M, Wu D et al (2004) Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J Biol Chem 279:34682–34690

    CAS  PubMed  Google Scholar 

  54. Cerrato CP, Pirisinu M, Vlachos EN et al (2015) Novel cell-penetrating peptide targeting mitochondria. FASEB J 29:4589–4599

    CAS  PubMed  Google Scholar 

  55. Cerrato CP, Künnapuu K, Langel Ü (2016) Cell-penetrating peptides with intracellular organelle targeting. Expert Opin Drug Deliv 2:245–255

    Google Scholar 

  56. Cerrato CP, Langel Ü (2017) Effect of a fusion peptide by covalent conjugation of a mitochondrial cell-penetrating peptide and a glutathione analog peptide. Mol Ther Methods Clin Dev 5:221–231

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Cerrato CP, Langel Ü (2018) Cell-penetrating peptides targeting mitochondria. Mitochondrial Biol Experiment Therap:593–611

    Google Scholar 

  58. Shokolenko IN, Alexeyev MF, Ledoux SP et al (2005) TAT-mediated protein transduction and targeted delivery of fusion proteins into mitochondria of breast cancer cells. DNA Repair (Amst) 4:511–518

    CAS  Google Scholar 

  59. Yousif LF, Stewart KM, Kelley SO (2009) Targeting mitochondria with organelle-specific compounds: Strategies and applications. Chembiochem 10:1939–1950

    CAS  PubMed  Google Scholar 

  60. Buondonno I, Gazzano E, Jean SR et al (2016) Mitochondria-targeted doxorubicin : a new therapeutic strategy against doxorubicin-resistant osteosarcoma. Mol Cancer Ther 15:2640–2652

    CAS  PubMed  Google Scholar 

  61. Cerrato CP, Kivijärvi T, Tozzi R et al (2020) Intracellular delivery of therapeutic antisense oligonucleotides targeting mRNA coding mitochondrial proteins by cell-penetrating peptides. J Mater Chem B 8:10825–10836

    CAS  PubMed  Google Scholar 

  62. Friedmann T (2001) Stanfield Rogers: insights into virus vectors and failure of an early gene therapy model. Mol Ther 4:285–288

    CAS  PubMed  Google Scholar 

  63. Friedmann T, Roblin R (1972) Gene therapy for human genetic disease? Science 175:949–955

    CAS  PubMed  Google Scholar 

  64. Blaese RM, Culver KW, Miller AD et al (1995) T lymphocyte-directed gene therapy for ADA-SCID: initial trial results after 4 years. Science 270:475–480

    CAS  PubMed  Google Scholar 

  65. Candotti F, Shaw KL, Muul L et al (2012) Gene therapy for adenosine deaminase-deficient severe combined immune deficiency: clinical comparison of retroviral vectors and treatment plans. Blood 120:3635–3646

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kumar SR, Markusic DM, Biswas M et al (2016) Clinical development of gene therapy: results and lessons from recent successes. Mol Ther 3:16034

    Google Scholar 

  67. Hanna E, Rémuzat C, Auquier P et al (2017) Gene therapies development: slow progress and promising prospect. J Mark Access Heal Policy 5:1265293

    Google Scholar 

  68. Dowdalls J (2015) $1-million price tag set for Glybera gene therapy. Nat Biotechnol 33:217–218

    Google Scholar 

  69. Thomas Scott C, DeFrancesco L (2016) Gene therapy’s out-of-body experience. Nat Biotechnol 34:600–607

    Google Scholar 

  70. Dowling JJ (2016) Eteplirsen therapy for Duchenne muscular dystrophy: skipping to the front of the line. Nat Rev Neurol 12:675–676

    CAS  PubMed  Google Scholar 

  71. Rangarajan S, Walsh L, Lester W et al (2017) AAV5–factor VIII gene transfer in severe hemophilia a. N Engl J Med 377:2519–2530

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Swedish Research Council for Natural Sciences, for Medical Research, and the Swedish Cancer Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmine Pasquale Cerrato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Cerrato, C.P., Kivijärvi, T., Langel, Ü. (2022). Mitochondrial Targeting Probes, Drug Conjugates, and Gene Therapeutics. In: Langel, Ü. (eds) Cell Penetrating Peptides. Methods in Molecular Biology, vol 2383. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1752-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1752-6_27

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1751-9

  • Online ISBN: 978-1-0716-1752-6

  • eBook Packages: Springer Protocols