Skip to main content

Methods to Visualize the Actin Cytoskeleton During Plant Cell Division

  • Protocol
  • First Online:
Plant Cell Division

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2382))

Abstract

Cell division in plants consists of separating the mother cell in two daughter cells by the centrifugal growth of a new wall. This process involves the reorganization of the structural elements of the cell, namely the microtubules and actin cytoskeleton which allow the coordination, the orientation, and the progression of mitosis. In addition to its implication in those plant-specific structures, the actin cytoskeleton, in close association with the plasma membrane, exhibits specific patterning at the cortex of the dividing cells, and might act as a signaling component. This review proposes an overview of the techniques available to visualize the actin cytoskeleton in fixed tissues or living cells during division, including electron, fluorescent, and super-resolution microscopy techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Livanos P, Muller S (2019) Division plane establishment and cytokinesis. Annu Rev Plant Biol 70:239–267

    Article  PubMed  Google Scholar 

  2. Seagull R, Heath I (1979) The effects of tannic acid on the in vivo preservation of microfilaments. Eur J Cell Biol 20(2):184–188

    CAS  PubMed  Google Scholar 

  3. Hardham A, Gunning B (1980) Some effects of colchicine on microtubules and cell division in roots of Azolla pinnata. Protoplasma 102(1–2):31–51

    Article  CAS  Google Scholar 

  4. Heath I, Seagull R (1982) Oriented cellulose fibrils and the cytoskeleton: a critical comparison of models. In: Lloyd CW (ed) The cytoskeleton in plant growth and development. Academic, pp 163–182

    Google Scholar 

  5. Tiwari SC, Polito VS (1988) Organization of the cytoskeleton in pollen tubes of Pyrus communis: a study employing conventional and freeze-substitution electron microscopy, immunofluorescence, and rhodamine-phalloidin. Protoplasma 147(2–3):100–112

    Article  Google Scholar 

  6. Lancelle S, Cresti M, Hepler P (1987) Ultrastructure of the cytoskeleton in freeze-substituted pollen tubes of Nicotiana alata. Protoplasma 140(2–3):141–150

    Article  Google Scholar 

  7. Tiwari SC et al (1984) Cytoskeleton and integration of cellular function in cells of higher plants. J Cell Biol 99(1 Pt 2):63s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Takeuchi M et al (2016) Single microfilaments mediate the early steps of microtubule bundling during preprophase band formation in onion cotyledon epidermal cells. Mol Biol Cell 27(11):1809–1820

    Article  PubMed  PubMed Central  Google Scholar 

  9. Forer A, Jackson WT, Engberg A (1979) Actin in spindles of Haemanthus katherinae endosperm. II. Distribution of actin in chromosomal spindle fibres, determined by analysis of serial sections. J Cell Sci 37:349–371

    Article  CAS  PubMed  Google Scholar 

  10. Schroeder TE (1976) Actin in dividing cells: evidence for its roles in cleavage but not mitosis. Cell Motil:265–278

    Google Scholar 

  11. Schmit AC, Lambert AM (1988) Plant actin filament and microtubule interactions during anaphase-telophase transition: effects of antagonist drugs. Biol Cell 64(3):309–319

    Article  CAS  PubMed  Google Scholar 

  12. Mole-Bajer J, Bajer AS, Inoue S (1988) Three-dimensional localization and redistribution of F-actin in higher plant mitosis and cell plate formation. Cell Motil Cytoskeleton 10(1–2):217–228

    Article  CAS  PubMed  Google Scholar 

  13. Dancker P et al (1975) Interaction of actin with phalloidin: polymerization and stabilization of F-actin. Biochim Biophys Acta 400(2):407–414

    Article  CAS  PubMed  Google Scholar 

  14. De Vries J, Wieland T (1978) Influence of phallotoxins and metal ions on the rate of proteolysis of actin. Biochemistry 17(10):1965–1968

    Article  PubMed  Google Scholar 

  15. Wulf E et al (1979) Fluorescent phallotoxin, a tool for the visualization of cellular actin. Proc Natl Acad Sci 76(9):4498–4502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Clayton L, Lloyd CW (1985) Actin organization during the cell cycle in meristematic plant cells. Actin is present in the cytokinetic phragmoplast. Exp Cell Res 156(1):231–238

    Article  CAS  PubMed  Google Scholar 

  17. Gunning B, Wick S (1985) Preprophase bands, phragmoplasts, and spatial control of cytokinesis. J Cell Sci Suppl 2:157–179

    Article  CAS  PubMed  Google Scholar 

  18. Lloyd CW, Traas J (1988) The role of F-actin in determining the division plane of carrot suspension cells. Drug studies. Development 102(1):211–221

    Article  CAS  Google Scholar 

  19. Traas JA et al (1987) An actin network is present in the cytoplasm throughout the cell cycle of carrot cells and associates with the dividing nucleus. J Cell Biol 105(1):387–395

    Article  CAS  PubMed  Google Scholar 

  20. Panteris E, Adamakis I-DS, Tzioutziou NA (2009) Abundance of actin filaments in the preprophase band and mitotic spindle of brick1 Zea mays mutant. Protoplasma 236(1–4):103–106

    Article  CAS  PubMed  Google Scholar 

  21. Yasuda H et al (2005) Localization of actin filaments on mitotic apparatus in tobacco BY-2 cells. Planta 222(1):118–129

    Article  CAS  PubMed  Google Scholar 

  22. Valster AH et al (1997) Probing the plant actin cytoskeleton during cytokinesis and interphase by profilin microinjection. Plant Cell 9(10):1815–1824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hoshino H et al (2003) Roles of actin-depleted zone and preprophase band in determining the division site of higher-plant cells, a tobacco BY-2 cell line expressing GFP-tubulin. Protoplasma 222(3–4):157–165

    Article  CAS  PubMed  Google Scholar 

  24. Cutler SR, Ehrhardt DW (2002) Polarized cytokinesis in vacuolate cells of Arabidopsis. Proc Natl Acad Sci U S A 99(5):2812–2817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kakimoto T, Shibaoka H (1987) Actin filaments and microtubules in the preprophase band and phragmoplast of tobacco cells. Protoplasma 140(2–3):151–156

    Article  Google Scholar 

  26. Kakimoto T, Shibaoka H (1987) A new method for preservation of actin filaments in higher plant cells. Plant Cell Physiol 28(8):1581–1585

    CAS  Google Scholar 

  27. Sonobe S, Shibaoka H (1989) Cortical fine actin filaments in higher plant cells visualized by rhodamine-phalloidin after pretreatment with m-maleimidobenzoyl N-hydroxysuccinimide ester. Protoplasma 148(2–3):80–86

    Article  Google Scholar 

  28. Palevitz BA (1987) Actin in the preprophase band of Allium cepa. J Cell Biol 104(6):1515–1519

    Article  CAS  PubMed  Google Scholar 

  29. McCurdy DW, Gunning BE (1990) Reorganization of cortical actin microfilaments and microtubules at preprophase and mitosis in wheat root-tip cells: a double label immunofluorescence study. Cell Motil Cytoskeleton 15(2):76–87

    Article  Google Scholar 

  30. Bo L, Palevitz BA (1992) Organization of cortical microfilaments in dividing root cells. Cell Motil 23(4):252–264

    Article  Google Scholar 

  31. Katsuta J, Hashiguchi Y, Shibaoka H (1990) The role of the cytoskeleton in positioning of the nucleus in premitotic tobacco BY-2 cells. J Cell Sci 95:413–422

    Article  Google Scholar 

  32. McCurdy DW, Sammut M, Gunning BES (1988) Immunofluorescent visualization of arrays of transverse cortical actin microfilaments in wheat root-tip cells. Protoplasma 147(2):204–206

    Article  Google Scholar 

  33. Panteris E (2008) Cortical actin filaments at the division site of mitotic plant cells: a reconsideration of the ‘actin-depleted zone’. New Phytol 179(2):334–341

    Article  CAS  PubMed  Google Scholar 

  34. Cho SO, Wick SM (1991) Actin in the developing stomatal complex of winter rye: a comparison of actin antibodies and Rh-phalloidin labeling of control and CB-treated tissues. Cell Motil Cytoskeleton 19(1):25–36

    Article  CAS  Google Scholar 

  35. Baluska F et al (1997) Rearrangements of F-actin arrays in growing cells of intact maize root apex tissues: a major developmental switch occurs in the postmitotic transition region. Eur J Cell Biol 72(2):113–121

    CAS  PubMed  Google Scholar 

  36. Li Y et al (2010) The type II Arabidopsis formin14 interacts with microtubules and microfilaments to regulate cell division. Plant Cell 22(8):2710–2726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu B, Palevitz BA (1992) Organization of cortical microfilaments in dividing root cells. Cell Motil Cytoskeleton 23(4):252–264

    Article  Google Scholar 

  38. Yoneda A et al (2004) Disruption of actin microfilaments causes cortical microtubule disorganization and extra-phragmoplast formation at M/G1 interface in synchronized tobacco cells. Plant Cell Physiol 45(6):761–769

    Article  CAS  PubMed  Google Scholar 

  39. Wang YS, Yoo CM, Blancaflor EB (2008) Improved imaging of actin filaments in transgenic Arabidopsis plants expressing a green fluorescent protein fusion to the C-and N-termini of the fimbrin actin-binding domain 2. New Phytol 177(2):525–536

    Article  CAS  PubMed  Google Scholar 

  40. Wang YS et al (2004) Green fluorescent protein fusions to Arabidopsis fimbrin 1 for spatio-temporal imaging of F-actin dynamics in roots. Cell Motil Cytoskeleton 59(2):79–93

    Article  CAS  PubMed  Google Scholar 

  41. Dyachok J et al (2014) Fluorescent protein-based reporters of the actin cytoskeleton in living plant cells: fluorophore variant, actin binding domain, and promoter considerations. Cytoskeleton 71(5):311–327

    Article  CAS  PubMed  Google Scholar 

  42. Buschmann H et al (2011) Cytoskeletal dynamics in interphase, mitosis and cytokinesis analysed through Agrobacterium-mediated transient transformation of tobacco BY-2 cells. New Phytol 190(1):258–267

    Article  CAS  PubMed  Google Scholar 

  43. Xue XH et al (2011) AtFH8 is involved in root development under effect of low-dose latrunculin B in dividing cells. Mol Plant 4(2):264–278

    Article  CAS  PubMed  Google Scholar 

  44. Voigt B et al (2005) GFP-FABD2 fusion construct allows in vivo visualization of the dynamic actin cytoskeleton in all cells of Arabidopsis seedlings. Eur J Cell Biol 84(6):595–608

    Article  CAS  PubMed  Google Scholar 

  45. Kojo KH, Yasuhara H, Hasezawa S (2014) Time-sequential observation of spindle and phragmoplast orientation in BY-2 cells with altered cortical actin microfilament patterning. Plant Signal Behav 9

    Google Scholar 

  46. Kojo KH et al (2013) Dual observation of microtubules and actin microfilaments during cell cycle progression in BY-YTRF1 cells. Cytologia 78(3):203–204

    Article  Google Scholar 

  47. Klotz J, Nick P (2012) A novel actin-microtubule cross-linking kinesin, NtKCH, functions in cell expansion and division. New Phytol 193(3):576–589

    Article  CAS  PubMed  Google Scholar 

  48. Lebecq A, Fangain A, Boussaroque A, Caillaud M-C (2021) Dynamic apical-basal enrichment of the F-Actin during cytokinesis in arabidopsis cells embedded in their tissues. bioRxiv: 2021.2007.2007.451432

    Google Scholar 

  49. Era A et al (2009) Application of lifeact reveals F-actin dynamics in Arabidopsis thaliana and the liverwort, Marchantia polymorpha. Plant Cell Physiol 50(6):1041–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Doumane M et al (2020) iDePP: a genetically encoded system for the inducible depletion of PI(4,5)P2 in Arabidopsis thaliana. bioRxiv:2020.05.13.091470

    Google Scholar 

  51. van Gisbergen PA et al (2012) Class II formin targeting to the cell cortex by binding PI (3, 5) P2 is essential for polarized growth. J Cell Biol 198(2):235–250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Durst S et al (2014) Organization of perinuclear actin in live tobacco cells observed by PALM with optical sectioning. J Plant Physiol 171(2):97–108

    Article  CAS  PubMed  Google Scholar 

  53. Wu SZ, Bezanilla M (2014) Myosin VIII associates with microtubule ends and together with actin plays a role in guiding plant cell division. elife 3

    Google Scholar 

  54. Ingouff M et al (2005) Plant formin AtFH5 is an evolutionarily conserved actin nucleator involved in cytokinesis. Nat Cell Biol 7(4):374–380

    Article  CAS  PubMed  Google Scholar 

  55. Deeks MJ et al (2010) The plant formin AtFH4 interacts with both actin and microtubules, and contains a newly identified microtubule-binding domain. J Cell Sci 123(Pt 8):1209–1215

    Article  CAS  PubMed  Google Scholar 

  56. Burridge K, Connell L (1983) Talin: a cytoskeletal component concentrated in adhesion plaques and other sites of actin-membrane interaction. Cell Motil 3(5):405–417

    Article  CAS  PubMed  Google Scholar 

  57. Kost B, Spielhofer P, Chua NH (1998) A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes. Plant J 16(3):393–401

    Article  CAS  PubMed  Google Scholar 

  58. Kost B et al (2000) Non-invasive F-actin visualization in living plant cells using a GFP-mouse talin fusion protein. In: Actin: a dynamic framework for multiple plant cell functions. Springer, pp 637–659

    Chapter  Google Scholar 

  59. Holweg C, Süßlin C, Nick P (2004) Capturing in vivo dynamics of the actin cytoskeleton stimulated by auxin or light. Plant Cell Physiol 45(7):855–863

    Article  CAS  PubMed  Google Scholar 

  60. Hoffmann A, Nebenführ A (2004) Dynamic rearrangements of transvacuolar strands in BY-2 cells imply a role of myosin in remodeling the plant actin cytoskeleton. Protoplasma 224(3–4):201–210

    Article  CAS  PubMed  Google Scholar 

  61. Ketelaar T, Anthony RG, Hussey PJ (2004) Green fluorescent protein-mTalin causes defects in actin organization and cell expansion in Arabidopsis and inhibits actin depolymerizing factor’s actin depolymerizing activity in vitro. Plant Physiol 136(4):3990–3998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bretscher A (1981) Fimbrin is a cytoskeletal protein that crosslinks F-actin in vitro. Proc Natl Acad Sci 78(11):6849–6853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. McCurdy DW, Kim M (1998) Molecular cloning of a novel fimbrin-like cDNA from Arabidopsis thaliana. Plant Mol Biol 36(1):23–31

    Article  CAS  PubMed  Google Scholar 

  64. Kovar DR et al (2001) Fluorescently-labeled fimbrin decorates a dynamic actin filament network in live plant cells. Planta 213(3):390–395

    Article  CAS  PubMed  Google Scholar 

  65. Sheahan MB et al (2004) A green fluorescent protein fusion to actin-binding domain 2 of Arabidopsis fimbrin highlights new features of a dynamic actin cytoskeleton in live plant cells. Plant Physiol 136(4):3968–3978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yoneda A et al (2007) Recent progress in living cell imaging of plant cytoskeleton and vacuole using fluorescent-protein transgenic lines and three-dimensional imaging. Protoplasma 230(3–4):129–139

    Article  CAS  PubMed  Google Scholar 

  67. Sano T et al (2005) Appearance of actin microfilament ‘twin peaks’ in mitosis and their function in cell plate formation, as visualized in tobacco BY-2 cells expressing GFP–fimbrin. Plant J 44(4):595–605

    Article  CAS  PubMed  Google Scholar 

  68. Higaki T et al (2008) Quantitative analysis of changes in actin microfilament contribution to cell plate development in plant cytokinesis. BMC Plant Biol 8:80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Riedl J et al (2008) Lifeact: a versatile marker to visualize F-actin. Nat Methods 5(7):605–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Doumane M et al (2017) Automated tracking of root for confocal time-lapse imaging of cellular processes. Bio Protoc 7(8):e2245

    Article  PubMed  PubMed Central  Google Scholar 

  71. Sadot E, Blancaflor EB (2019) The actomyosin system in plant cell division: lessons learned from microscopy and pharmacology. In: Sahi VP, Baluška F (eds) The cytoskeleton: diverse roles in a plant’s life. Springer, pp 85–100

    Chapter  Google Scholar 

  72. Takeuchi M, Staehelin A, Mineyuki Y (2017) Actin-microtubule interaction in plants. In: Jimenez-Lopez JC (ed) Cytoskeleton-structure, dynamics, function and disease. InTechOpen, pp 33–54

    Google Scholar 

  73. Sampathkumar A et al (2011) Live cell imaging reveals structural associations between the actin and microtubule cytoskeleton in Arabidopsis. Plant Cell 23(6):2302–2313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Xu T et al (2009) A cotton kinesin GhKCH2 interacts with both microtubules and microfilaments. Biochem J 421(2):171–180

    Article  CAS  PubMed  Google Scholar 

  75. Vanstraelen M et al (2004) A plant-specific subclass of C-terminal kinesins contains a conserved a-type cyclin-dependent kinase site implicated in folding and dimerization. Plant Physiol 135(3):1417–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Vanstraelen M et al (2006) Cell cycle-dependent targeting of a kinesin at the plasma membrane demarcates the division site in plant cells. Curr Biol 16(3):308–314

    Article  CAS  PubMed  Google Scholar 

  77. Igarashi H et al (2000) Isolation of a novel 190 kDa protein from tobacco BY-2 cells: possible involvement in the interaction between actin filaments and microtubules. Plant Cell Physiol 41(8):920–931

    Article  CAS  PubMed  Google Scholar 

  78. van Gisbergen PA, Bezanilla M (2013) Plant formins: membrane anchors for actin polymerization. Trends Cell Biol 23(5):227–233

    Article  PubMed  CAS  Google Scholar 

  79. Hedde PN, Nienhaus GU (2014) Super-resolution localization microscopy with photoactivatable fluorescent marker proteins. Protoplasma 251(2):349–362

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the SiCE group (RDP, Lyon, France), in particular Yvon Jaillais and Isabelle Fobis-Loisy; to Oliver Hamant and Jan Traas (RDP, Lyon, France) for comments and discussions. This work was supported by ANRJC/JC INTERPLAY (ANR-16-CE13-0021) and ANR PRC PlantScape (ANR-20-CE13-0026) and a SEED FUND ENS LYON-2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Cécile Caillaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Caillaud, MC. (2022). Methods to Visualize the Actin Cytoskeleton During Plant Cell Division. In: Caillaud, MC. (eds) Plant Cell Division. Methods in Molecular Biology, vol 2382. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1744-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1744-1_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1743-4

  • Online ISBN: 978-1-0716-1744-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics