Skip to main content

Enzymatic Analyses in Soils

  • Protocol
  • First Online:

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Soil enzymes are included in the process of decomposition of the organic matter. The essential virtue of using enzyme assays for soil is that they are comparatively simple and mostly available analytical methods. However, since enzyme analysis results vary with the biological chemical, physical properties of soils, analytical methods may not reflect the true results. With the developing technology, the enzyme analysis methods used in soil enzyme analysis should be updated with new methods. The purpose of this section is to procure information regarding current methods that can be determined with new technologies in soil enzyme analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Das SK, Varma A (2010) Role of enzymes in maintaining soil health. In: Shukla G, Varma A (eds) Soil enzymology, vol 22. Springer, Berlin, pp 25–42

    Chapter  Google Scholar 

  2. Gunjal AB, Waghmode MS, Patil NN, Nawani NN (2019) Chapter 9—significance of soil enzymes in agriculture. In: Bhatt P (ed) Smart bioremediation technologies. Academic Press, pp 159–168. https://doi.org/10.1016/B978-0-12-818307-6.00009-3

    Chapter  Google Scholar 

  3. Methods of soil enzymology (2011) American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. https://doi.org/10.2136/sssabookser9

  4. Alef K, Nannipieri P (1995) Methods in applied soil microbiology and biochemistry. Elsevier. https://doi.org/10.1016/B978-0-12-513840-6.X5014-9

    Book  Google Scholar 

  5. Naeem I, Masood N, Turan V, Iqbal M (2021) Prospective usage of magnesium potassium phosphate cement combined with Bougainvillea alba derived biochar to reduce Pb bioavailability in soil and its uptake by Spinacia oleracea L. Ecotoxicol Environ Saf 208:111723

    Article  CAS  Google Scholar 

  6. Turan V (2019) Confident performance of chitosan and pistachio shell biochar on reducing Ni bioavailability in soil and plant plus improved the soil enzymatic activities, antioxidant defense system and nutritional quality of lettuce. Ecotoxicol Environ Saf 183:109594

    Article  CAS  Google Scholar 

  7. Turan V (2019) Potential of pistachio shell biochar and dicalcium phosphate combination to reduce Pb speciation in spinach, improved soil enzymatic activities, plant nutritional quality, and antioxidant defense system. Chemosphere 2019:125611. https://doi.org/10.1016/j.chemosphere.2019.125611

    Article  CAS  Google Scholar 

  8. Khan MA et al (2019) Associative effects of lignin-derived biochar and arbuscular mycorrhizal fungi applied to soil polluted from Pb-acid batteries effluents on barley grain safety. Sci Total Environ 2019:136294. https://doi.org/10.1016/j.scitotenv.2019.136294

    Article  CAS  Google Scholar 

  9. Bilen S, Kim JJ, Dick WA (2011) Biologically active compounds in soil: plant hormones and allelochemicals. In: Dick RP (ed) SSSA book series. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, pp 261–273. https://doi.org/10.2136/sssabookser9.c12

  10. Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1:301–307

    Article  CAS  Google Scholar 

  11. Tabatabai MA (1982) Methods of soil analysis part 2. Chemical and microbiological properties. In: Soil Enzymes, 2nd edn. American Society of Agronomy, Soil Science Society of America-Madison, pp 903–947

    Google Scholar 

  12. Nannipieri P et al (2012) Soil enzymology: classical and molecular approaches. Biol Fertil Soils 48:743–762

    Article  Google Scholar 

  13. Schinner F, Öhlinger R, Kandeler E, Margesin R (eds) (1996) Methods in soil biology. Springer, Berlin. https://doi.org/10.1007/978-3-642-60966-4

    Book  Google Scholar 

  14. Acosta-Martínez V, Tabatabai MA (2000) Enzyme activities in a limed agricultural soil. Biol Fertil Soils 31:85–91

    Article  Google Scholar 

  15. Frankenberger WT, Tabatabai MA (1980) Amidase activity in soils: I. Method of assay. Soil Sci Soc Am J 44:282–287

    Article  CAS  Google Scholar 

  16. Frankenberger WT, Johanson JB (1982) Effect of pH on enzyme stability in soils. Soil Biol Biochem 14:433–437

    Article  CAS  Google Scholar 

  17. Mulvaney RL (1996) Nitrogen-inorganic forms. In: Sparks DL et al (eds) SSSA book series. Soil Science Society of America, American Society of Agronomy, pp 1123–1184. https://doi.org/10.2136/sssabookser5.3.c38

  18. Klose S, Bilen S, Ali Tabatabai M, Dick WA (2011) Sulfur cycle enzymes. In: Dick RP (ed) SSSA book series. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, pp 125–159. https://doi.org/10.2136/sssabookser9.c7

  19. Eivazi F, Tabatabai MA (1988) Glucosidases and galactosidases in soils. Soil Biol Biochem 20:601–606

    Article  CAS  Google Scholar 

  20. Deng S, Popova I (2011) Carbohydrate hydrolases. In: Dick RP (ed) SSSA book series. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, pp 185–209. https://doi.org/10.2136/sssabookser9.c9

    Chapter  Google Scholar 

  21. Prosser JA, Speir TW, Stott DE (2015) Soil oxidoreductases and FDA hydrolysis. In: Dick RP (ed) SSSA book series. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, pp 103–124. https://doi.org/10.2136/sssabookser9.c6

    Chapter  Google Scholar 

  22. Gianfreda L, Rao MA (2004) Potential of extra cellular enzymes in remediation of polluted soils: a review. Enzym Microb Technol 35:339–354

    Article  CAS  Google Scholar 

  23. Gianfreda L, Rao MA (2011) Stabilizing enzymes as synthetic complexes. In: Dick RP (ed) SSSA book series. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, pp 319–369. https://doi.org/10.2136/sssabookser9.c15

    Chapter  Google Scholar 

  24. Williams CJ, Shingara EA, Yavitt JB (2000) Phenol oxidase activity in peatlands in New York state: response to summer drought and peat type. Wetlands 20:416–421

    Article  Google Scholar 

  25. Iyyemperumal K, Shi W (2008) Soil enzyme activities in two forage systems following application of different rates of swine lagoon effluent or ammonium nitrate. Appl Soil Ecol 38:128–136

    Article  Google Scholar 

  26. Prosser JA, Speir TW, Stott DE (2011) Soil oxidoreductase and FDA hydrolysis. In: Methods of soil enzymology, pp 103–124

    Google Scholar 

  27. Tabatabai MA (1994) Soil enzymes. In: Weaver RW et al (eds) SSSA book series. Soil Science Society of America, pp 775–833. https://doi.org/10.2136/sssabookser5.2.c37

    Chapter  Google Scholar 

  28. Acosta-Martínez V, Ali Tabatabai M (2011) Phosphorus cycle enzymes. In: Dick RP (ed) SSSA book series. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, pp 161–183. https://doi.org/10.2136/sssabookser9.c8

    Chapter  Google Scholar 

  29. Bremmer JM, Mulvaney CS (1982) Nitrogen-total. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. Part 2. Chemical and microbiological properties

    Google Scholar 

  30. Kandeler E, Poll C, Frankenberger WT, Ali Tabatabai M (2011) Nitrogen cycle enzymes. In: Dick RP (ed) SSSA book series. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, pp 211–245. https://doi.org/10.2136/sssabookser9.c10

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bilen, S., Turan, V. (2022). Enzymatic Analyses in Soils. In: Amaresan, N., Patel, P., Amin, D. (eds) Practical Handbook on Agricultural Microbiology. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1724-3_50

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1724-3_50

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1723-6

  • Online ISBN: 978-1-0716-1724-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics