Skip to main content

Engineered Metal-Binding Sites to Probe Protein Folding Transition States: Psi Analysis

  • Protocol
  • First Online:
Protein Folding

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2376))

Abstract

The formation of the transition state ensemble (TSE) represents the rate-limiting step in protein folding. The TSE is the least populated state on the pathway, and its characterization remains a challenge. Properties of the TSE can be inferred from the effects on folding and unfolding rates for various perturbations. A difficulty remains on how to translate these kinetic effects to structural properties of the TSE. Several factors can obscure the translation of point mutations in the frequently used method, “mutational Phi analysis.” We take a complementary approach in “Psi analysis,” employing rationally inserted metal binding sites designed to probe pairwise contacts in the TSE. These contacts can be confidently identified and used to construct structural models of the TSE. The method has been applied to multiple proteins and consistently produces a considerably more structured and native-like TSE than Phi analysis. This difference has significant implications to our understanding of protein folding mechanisms. Here we describe the application of the method and discuss how it can be used to study other conformational transitions such as binding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Englander SW, Mayne L (2014) The nature of protein folding pathways. Proc Natl Acad Sci U S A 111(45):15873–15880. https://doi.org/10.1073/pnas.1411798111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jackson SE, Fersht AR (1991) Folding of chymotrypsin inhibitor 2. 1. Evidence for a two-state transition. Biochemistry 30(43):10428–10435

    CAS  PubMed  Google Scholar 

  3. Krantz BA, Mayne L, Rumbley J, Englander SW, Sosnick TR (2002) Fast and slow intermediate accumulation and the initial barrier mechanism in protein folding. J Mol Biol 324(2):359–371

    CAS  PubMed  Google Scholar 

  4. Jackson SE, elMasry N, Fersht AR (1993) Structure of the hydrophobic core in the transition state for folding of chymotrypsin inhibitor 2: a critical test of the protein engineering method of analysis. Biochemistry 32(42):11270–11278

    CAS  PubMed  Google Scholar 

  5. Sosnick TR, Dothager RS, Krantz BA (2004) Differences in the folding transition state of ubiquitin indicated by phi and psi analyses. Proc Natl Acad Sci U S A 101(50):17377–17382

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Feng H, Vu ND, Zhou Z, Bai Y (2004) Structural examination of Phi-value analysis in protein folding. Biochemistry 43(45):14325–14331

    CAS  PubMed  Google Scholar 

  7. Sanchez IE, Kiefhaber T (2003) Origin of unusual phi-values in protein folding: evidence against specific nucleation sites. J Mol Biol 334(5):1077–1085

    CAS  PubMed  Google Scholar 

  8. Bulaj G, Goldenberg DP (2001) Phi-values for BPTI folding intermediates and implications for transition state analysis. Nat Struct Biol 8(4):326–330

    CAS  PubMed  Google Scholar 

  9. Ozkan SB, Bahar I, Dill KA (2001) Transition states and the meaning of Phi-values in protein folding kinetics. Nat Struct Biol 8(9):765–769

    CAS  PubMed  Google Scholar 

  10. Fersht AR, Sato S (2004) Phi-value analysis and the nature of protein-folding transition states. Proc Natl Acad Sci U S A 101(21):7976–7981

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Krantz BA, Dothager RS, Sosnick TR (2004) Discerning the structure and energy of multiple transition states in protein folding using psi-analysis. J Mol Biol 337(2):463–475

    CAS  PubMed  Google Scholar 

  12. Raleigh DP, Plaxco KW (2005) The protein folding transition state: what are phi-values really telling us? Protein Pept Lett 12(2):117–122

    CAS  PubMed  Google Scholar 

  13. Naganathan AN, Muñoz V (2010) Insights into protein folding mechanisms from large scale analysis of mutational effects. Proc Natl Acad Sci U S A 107(19):8611–8616. https://doi.org/10.1073/pnas.1000988107

    Article  PubMed  PubMed Central  Google Scholar 

  14. Baxa MC, Yu W, Adhikari AN, Ge L, Xia Z, Zhou R, Freed KF, Sosnick TR (2015) Even with nonnative interactions, the updated folding transition states of the homologs Proteins G & L are extensive and similar. Proc Natl Acad Sci U S A 112(27):8302–8307. https://doi.org/10.1073/pnas.1503613112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yoo TY, Adhikari A, Xia Z, Huynh T, Freed KF, Zhou R, Sosnick TR (2012) The folding transition state of protein L is extensive with nonnative interactions (and not small and polarized). J Mol Biol 420(3):220–234. https://doi.org/10.1016/j.jmb.2012.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sosnick TR, Krantz BA, Dothager RS, Baxa M (2006) Characterizing the protein folding transition state using psi analysis. Chem Rev 106(5):1862–1876

    CAS  PubMed  Google Scholar 

  17. Baxa MC, Freed KF, Sosnick TR (2009) Psi-constrained simulations of protein folding transition states: implications for calculating Phi values. J Mol Biol 386(4):920–928

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Baxa M, Freed KF, Sosnick TR (2008) Quantifying the structural requirements of the folding transition state of protein A and other systems. J Mol Biol 381:1362–1381

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Pandit AD, Krantz BA, Dothager RS, Sosnick TR (2007) Characterizing protein folding transition states using Psi-analysis. Methods Mol Biol 350:83–104

    CAS  PubMed  Google Scholar 

  20. Krantz BA, Sosnick TR (2001) Engineered metal binding sites map the heterogeneous folding landscape of a coiled coil. Nat Struct Biol 8(12):1042–1047

    CAS  PubMed  Google Scholar 

  21. Shandiz AT, Baxa MC, Sosnick TR (2012) A “Link-Psi” strategy using crosslinking indicates that the folding transition state of ubiquitin is not very malleable. Prot Sci 21(6):819–827. https://doi.org/10.1002/pro.2065

    Article  CAS  Google Scholar 

  22. Shandiz AT, Capraro BR, Sosnick TR (2007) Intramolecular cross-linking evaluated as a structural probe of the protein folding transition state. Biochemistry 46(48):13711–13719

    CAS  PubMed  Google Scholar 

  23. Bosco G, Baxa M, Sosnick T (2009) Metal binding kinetics of bi-Histidine sites used in Psi-analysis: evidence for high energy protein folding intermediates. Biochemistry 48(13):2950–2959. https://doi.org/10.1021/bi802072u

    Article  CAS  PubMed  Google Scholar 

  24. Krantz BA, Dothager RS, Sosnick TR (2005) Erratum to Discerning the structure and energy of multiple transition states in protein folding using psi-analysis. J Mol Biol 347(5):1103

    CAS  Google Scholar 

  25. Pandit AD, Jha A, Freed KF, Sosnick TR (2006) Small proteins fold through transition states with native-like topologies. J Mol Biol 361(4):755–770

    CAS  PubMed  Google Scholar 

  26. Taddei N, Chiti F, Fiaschi T, Bucciantini M, Capanni C, Stefani M, Serrano L, Dobson CM, Ramponi G (2000) Stabilisation of alpha-helices by site-directed mutagenesis reveals the importance of secondary structure in the transition state for acylphosphatase folding. J Mol Biol 300(3):633–647

    CAS  PubMed  Google Scholar 

  27. Chiti F, Taddei N, White PM, Bucciantini M, Magherini F, Stefani M, Dobson CM (1999) Mutational analysis of acylphosphatase suggests the importance of topology and contact order in protein folding. Nat Struct Biol 6(11):1005–1009

    CAS  PubMed  Google Scholar 

  28. Went HM, Jackson SE (2005) Ubiquitin folds through a highly polarized transition state. Protein Eng Des Sel 18(5):229–237

    CAS  PubMed  Google Scholar 

  29. Sato S, Religa TL, Daggett V, Fersht AR (2004) Testing protein-folding simulations by experiment: B domain of protein A. Proc Natl Acad Sci U S A 101(18):6952–6956

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Gu H, Kim D, Baker D (1997) Contrasting roles for symmetrically disposed beta-turns in the folding of a small protein. J Mol Biol 274(4):588–596

    CAS  PubMed  Google Scholar 

  31. Kim DE, Fisher C, Baker D (2000) A breakdown of symmetry in the folding transition state of protein L. J Mol Biol 298(5):971–984

    CAS  PubMed  Google Scholar 

  32. McCallister EL, Alm E, Baker D (2000) Critical role of beta-hairpin formation in protein G folding. Nat Struct Biol 7(8):669–673

    CAS  PubMed  Google Scholar 

  33. Nauli S, Kuhlman B, Baker D (2001) Computer-based redesign of a protein folding pathway. Nat Struct Biol 8(7):602–605

    CAS  PubMed  Google Scholar 

  34. Kuhlman B, O’Neill JW, Kim DE, Zhang KY, Baker D (2002) Accurate computer-based design of a new backbone conformation in the second turn of protein L. J Mol Biol 315(3):471–477. https://doi.org/10.1006/jmbi.2001.5229

    Article  CAS  PubMed  Google Scholar 

  35. Yu W, Baxa MC, Gagnon I, Freed KF, Sosnick TR (2016) Cooperative folding near the downhill limit determined with amino acid resolution by hydrogen exchange. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1522500113

  36. Burton RE, Huang GS, Daugherty MA, Calderone TL, Oas TG (1997) The energy landscape of a fast-folding protein mapped by Ala-->Gly substitutions. Nat Struct Biol 4(4):305–310

    CAS  PubMed  Google Scholar 

  37. Plaxco KW, Simons KT, Baker D (1998) Contact order, transition state placement and the refolding rates of single domain proteins. J Mol Biol 277(4):985–994

    CAS  PubMed  Google Scholar 

  38. Garcia-Mira MM, Boehringer D, Schmid FX (2004) The folding transition state of the cold shock protein is strongly polarized. J Mol Biol 339(3):555–569

    CAS  PubMed  Google Scholar 

  39. Grantcharova VP, Riddle DS, Santiago JV, Baker D (1998) Important role of hydrogen bonds in the structurally polarized transition state for folding of the src SH3 domain. Nat Struct Biol 5(8):714–720

    CAS  PubMed  Google Scholar 

  40. Neudecker P, Zarrine-Afsar A, Choy WY, Muhandiram DR, Davidson AR, Kay LE (2006) Identification of a collapsed intermediate with non-native long-range interactions on the folding pathway of a pair of Fyn SH3 domain mutants by NMR relaxation dispersion spectroscopy. J Mol Biol 363:958–976

    CAS  PubMed  Google Scholar 

  41. Zarrine-Afsar A, Dahesh S, Davidson AR (2012) A residue in helical conformation in the native state adopts a beta-strand conformation in the folding transition state despite its high and canonical Phi-value. Proteins. https://doi.org/10.1002/prot.24030

  42. Di Nardo AA, Korzhnev DM, Stogios PJ, Zarrine-Afsar A, Kay LE, Davidson AR (2004) Dramatic acceleration of protein folding by stabilization of a nonnative backbone conformation. Proc Natl Acad Sci U S A 101(21):7954–7959. https://doi.org/10.1073/pnas.0400550101

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ruczinski I, Sosnick TR, Plaxco KW (2006) Methods for the accurate estimation of confidence intervals on protein folding phi-values. Protein Sci 15(10):2257–2264

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Krantz BA, Moran LB, Kentsis A, Sosnick TR (2000) D/H amide kinetic isotope effects reveal when hydrogen bonds form during protein folding. Nat Struct Biol 7(1):62–71

    CAS  PubMed  Google Scholar 

  45. Krantz BA, Srivastava AK, Nauli S, Baker D, Sauer RT, Sosnick TR (2002) Understanding protein hydrogen bond formation with kinetic H/D amide isotope effects. Nat Struct Biol 9(6):458–463

    CAS  PubMed  Google Scholar 

  46. Scholtz JM, Grimsley GR, Pace CN (2009) Chapter 23 Solvent Denaturation of Proteins and Interpretations of the m Value. In: Johnson ML, Ackers GK, Holt JM (ed) Biothermodynamics, Part B. Methods in Enzymology, vol 466. Academic Press, pp 549–565. https://doi.org/10.1016/S0076-6879(09)66023-7

  47. Sharp KA, Englander SW (1994) How much is a stabilizing bond worth? Trends Biochem Sci 19(12):526–529

    CAS  PubMed  Google Scholar 

  48. Eyring H (1935) The activated complex in chemical reactions. J Chem Phys 3:107–115

    CAS  Google Scholar 

  49. Fersht AR (2004) ϕ value versus ψ analysis. Proc Natl Acad Sci U S A 101(50):17327–17328

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18(15):2714–2723

    CAS  PubMed  Google Scholar 

  51. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345. https://doi.org/10.1038/nmeth.1318

    Article  CAS  PubMed  Google Scholar 

  52. Matthews CR (1987) Effects of point mutations on the folding of globular proteins. Methods Enzymol 154:498–511

    CAS  PubMed  Google Scholar 

  53. Myers JK, Pace CN, Scholtz JM (1995) Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Sci 4(10):2138–2148

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Leffler JE (1953) Parameters for the description of transition states. Science 107:340–341

    Google Scholar 

  55. Martinez JC, Pisabarro MT, Serrano L (1998) Obligatory steps in protein folding and the conformational diversity of the transition state. Nat Struct Biol 5(8):721–729

    CAS  PubMed  Google Scholar 

  56. Viguera AR, Serrano L (1997) Loop length, intramolecular diffusion and protein folding. Nat Struct Biol 4(11):939–946

    CAS  PubMed  Google Scholar 

  57. Yin L, Krantz B, Russell NS, Deshpande S, Wilkinson KD (2000) Nonhydrolyzable diubiquitin analogues are inhibitors of ubiquitin conjugation and deconjugation. Biochemistry 39(32):10001–10010

    CAS  PubMed  Google Scholar 

  58. Reddy G, Thirumalai D (2015) Dissecting ubiquitin folding using the self-organized polymer model. J Phys Chem B 119(34):11358–11370. https://doi.org/10.1021/acs.jpcb.5b03471

    Article  CAS  PubMed  Google Scholar 

  59. Shen T, Cao Y, Zhuang S, Li H (2012) Engineered bi-histidine metal chelation sites map the structure of the mechanical unfolding transition state of an elastomeric protein domain GB1. Biophys J 103(4):807–816. https://doi.org/10.1016/j.bpj.2012.07.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Horn JR, Sosnick TR, Kossiakoff AA (2009) Principal determinants leading to transition state formation of a protein-protein complex, orientation trumps side-chain interactions. Proc Natl Acad Sci U S A 106(8):2559–2564. https://doi.org/10.1073/pnas.0809800106

    Article  PubMed  PubMed Central  Google Scholar 

  61. Higaki JN, Fletterick RJ, Craik CS (1992) Engineered metalloregulation in enzymes. TIBS 17(3):100–104

    CAS  PubMed  Google Scholar 

  62. Kim CA, Berg JM (1993) Thermodynamic beta-sheet propensities measured using a zinc-finger host peptide. Nature 362(6417):267–270

    CAS  PubMed  Google Scholar 

  63. Benson DE, Wisz MS, Hellinga HW (1998) The development of new biotechnologies using metalloprotein design. Curr Opin Biotechnol 9(4):370–376

    CAS  PubMed  Google Scholar 

  64. Dwyer MA, Looger LL, Hellinga HW (2003) Computational design of a Zn2+ receptor that controls bacterial gene expression. Proc Natl Acad Sci U S A 100(20):11255–11260

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Regan L (1995) Protein design: novel metal-binding sites. Trends Biochem Sci 20(7):280–285

    CAS  PubMed  Google Scholar 

  66. Moran LB, Schneider JP, Kentsis A, Reddy GA, Sosnick TR (1999) Transition state heterogeneity in GCN4 coiled coil folding studied by using multisite mutations and crosslinking. Proc Natl Acad Sci U S A 96(19):10699–10704

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Jumper JM, Faruk NF, Freed KF, Sosnick TR (2018) Trajectory-based training enables protein simulations with accurate folding and Boltzmann ensembles in cpu-hours. PLOS Computational Biology 14(12):e1006578. https://doi.org/10.1371/journal.pcbi.1006578

  68. Jumper JM, Faruk NF, Freed KF, Sosnick TR (2018) Accurate calculation of side chain packing and free energy with applications to protein molecular dynamics. PLOS Computational Biology 14(12):e1006342. https://doi.org/10.1371/journal.pcbi.1006342

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobin R. Sosnick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Baxa, M.C., Sosnick, T.R. (2022). Engineered Metal-Binding Sites to Probe Protein Folding Transition States: Psi Analysis. In: Muñoz, V. (eds) Protein Folding. Methods in Molecular Biology, vol 2376. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1716-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1716-8_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1715-1

  • Online ISBN: 978-1-0716-1716-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics