Skip to main content

Peritoneal Pre-conditioning Method for In Vivo Vascular Graft Maturation Utilizing a Porous Pouch

  • Protocol
  • First Online:
Vascular Tissue Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2375))

  • 1139 Accesses

Abstract

Tissue-engineered vascular grafts (TEVGs) require strategies to allow graft remodeling but avoid stenosis and loss of graft mechanics. A variety of promising biomaterials and methods to incorporate cells have been tested, but intimal hyperplasia and graft thrombosis are still concerning when grafting in small-diameter arteries. Here, we describe a strategy using the peritoneal cavity as an “in vivo” bioreactor to recruit autologous cells to electrospun conduits, which can improve the in vivo response after aortic grafting. We focus on the methods for a novel hydrogel pouch design to enclose the electrospun conduits that can avoid peritoneal adhesion but still allow infiltration of peritoneal fluid and cells needed to provide benefits when subsequently grafting in the aorta.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shojaee M, Bashur CA (2017) Compositions including synthetic and natural blends for integration and structural integrity: engineered for different vascular graft applications. Adv Healthc Mater 6:1700001

    Article  Google Scholar 

  2. Nieponice A et al (2010) In Vivo assessment of a tissue-engineered vascular graft combining a biodegradable elastomeric scaffold and muscle-derived stem cells in a rat model. Tissue Eng Part A 16:1215–1223

    Article  CAS  Google Scholar 

  3. Singh C, Wong C, Wang X (2015) Medical textiles as vascular implants and their success to mimic natural arteries. J Funct Biomater 6:500–525

    Article  CAS  Google Scholar 

  4. Ribas LM et al (2017) Experimental implantation of an arterial substitute made of silicone reinforced with polyester fabric in rabbits. Clinics 72:780–784

    Article  Google Scholar 

  5. Pashneh-Tala S, MacNeil S, Claeyssens F (2016) The tissue-engineered vascular graft—past, present, and future. Tissue Eng B Rev 22:68–100

    Article  CAS  Google Scholar 

  6. Syedain Z et al (2016) Tissue engineering of acellular vascular grafts capable of somatic growth in young lambs. Nat Commun 7:12951

    Article  CAS  Google Scholar 

  7. Klinkert P, Post PN, Breslau PJ, van Bockel JH (2004) Saphenous vein versus PTFE for above-knee femoropopliteal bypass. A review of the literature. Eur J Vasc Endovasc Surg 27:357–362

    Article  CAS  Google Scholar 

  8. Roger VL et al (2012) Heart disease and stroke statistics-2012 update: a report from the American heart association. Circulation 125:e2–e220

    Article  Google Scholar 

  9. Williams DF (2019) Challenges with the development of biomaterials for sustainable tissue engineering. Front Bioeng Biotechnol 7:127

    Article  Google Scholar 

  10. Thottappillil N, Nair PD (2015) Scaffolds in vascular regeneration: current status. Vasc Health Risk Manag 11:79–91

    PubMed  PubMed Central  Google Scholar 

  11. van Wachem PB, Stronck JWS, Koers-Zuideveld R, Dijk F, Wildevuur CRH (1990) Vacuum cell seeding: a new method for the fast application of an evenly distributed cell layer on porous vascular grafts. Biomaterials 11:602–606

    Article  Google Scholar 

  12. Pawlowski KJ, Rittgers SE, Schmidt SP, Bowlin GL (2004) Endothelial cell seeding of polymeric vascular grafts. Front Biosci 9:1412–1421

    Article  CAS  Google Scholar 

  13. Roh JD et al (2008) Small-diameter biodegradable scaffolds for functional vascular tissue engineering in the mouse model. Biomaterials 29:1454–1463

    Article  CAS  Google Scholar 

  14. Perea H, Aigner J, Hopfner U, Wintermantel E (2006) Direct magnetic tubular cell seeding: a novel approach for vascular tissue engineering. Cells Tissues Organs 183:156–165

    Article  CAS  Google Scholar 

  15. Tiwari A, Punshon G, Kidane A, Hamilton G, Seifalian AM (2003) Magnetic beads (Dynabead™) toxicity to endothelial cells at high bead concentration: implication for tissue engineering of vascular prosthesis. Cell Biol Toxicol 19:265–272

    Article  CAS  Google Scholar 

  16. Shojaee M, Wood KB, Moore LK, Bashur CA (2017) Peritoneal pre-conditioning reduces macrophage marker expression in collagen-containing engineered vascular grafts. Acta Biomater 64:80–93

    Article  CAS  Google Scholar 

  17. Song L, Wang L, Shah PK, Chaux A, Sharifi BG (2010) Bioengineered vascular graft grown in the mouse peritoneal cavity. J Vasc Surg 52:994–1002

    Article  Google Scholar 

  18. Furukoshi M, Moriwaki T, Nakayama Y (2016) Development of an in vivo tissue-engineered vascular graft with designed wall thickness (biotube type C) based on a novel caged mold. J Artif Organs 19:54–61

    Article  CAS  Google Scholar 

  19. Birthare K, Shojaee M, Jones CG, Brenner JR, Bashur CA (2016) Collagen incorporation within electrospun conduits reduces lipid oxidation and impacts conduit mechanics. Biomed Mater 11:025019

    Article  Google Scholar 

  20. Bashur CA, Eagleton MJ, Ramamurthi A (2013) Impact of electrospun conduit fiber diameter and enclosing pouch pore size on vascular constructs grown within rat peritoneal cavities. Tissue Eng Part A 19:809–823

    Article  CAS  Google Scholar 

  21. Chue WL et al (2004) Dog peritoneal and pleural cavities as bioreactors to grow autologous vascular grafts. J Vasc Surg 39:859–867

    Article  Google Scholar 

  22. Shojaee M et al (2020) Design and characterization of a porous pouch to prevent peritoneal adhesions during in vivo vascular graft maturation. J Mech Behav Biomed Mater 102:103461

    Article  CAS  Google Scholar 

  23. Nezarati RM, Eifert MB, Cosgriff-Hernandez E (2013) Effects of humidity and solution viscosity on electrospun fiber morphology. Tissue Eng Part C Methods 19:810–819

    Article  CAS  Google Scholar 

  24. Hu CL, Crombie G, Franzblau C (1978) A new assay for collagenolytic activity. Anal Biochem 88:638–643

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris A. Bashur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sameti, M., Bashur, C.A. (2022). Peritoneal Pre-conditioning Method for In Vivo Vascular Graft Maturation Utilizing a Porous Pouch. In: Zhao, F., Leong, K.W. (eds) Vascular Tissue Engineering. Methods in Molecular Biology, vol 2375. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1708-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1708-3_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1707-6

  • Online ISBN: 978-1-0716-1708-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics