Skip to main content

Methods for Differentiating hiPSCs into Vascular Smooth Muscle Cells

  • Protocol
  • First Online:
Vascular Tissue Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2375))

Abstract

Despite numerous efforts to generate vascular tissues that recapitulate the physiological characteristics of native vessels, vascular cell source remains one of the principal challenges in the construction of tissue-engineered vascular grafts (TEVGs). Human pluripotent stem cells, therefore, represent an indispensable source to supply a large production of vascular smooth muscle cells (VSMCs) for cell-based therapy. In particular, human induced pluripotent stem cells (hiPSCs) generated from the same individual have opened up new avenues of achieving patient specificity through the derivation of autologous and immunocompatible VSMCs. This book chapter will detail three representative methods of differentiating hiPSCs into VSMCs that are structurally and functionally mature for TEVG engineering. Luo et al. reported an embryoid body (EB)-based approach to generate a robust, large-scale production of mature, functional hiPSC-derived VSMCs as a cell replacement for vascular tissue engineering. EB formation has an advantage of resembling early embryonic development and allowing cellular interactions in three dimensions. Cheung et al. established a system to produce embryological origin-specific hiPSC-derived VSMCs from the neuroectoderm, lateral plate mesoderm, and paraxial mesoderm lineages in a chemically defined manner. This allows site-specific vascular disease modeling. Moreover, Eoh et al. followed Wanjare et al.’s method to construct hiPSC-derived VSMCs using monolayer cultures of extracellular matrix proteins, with the addition of a pulsatile flow for the secretion of mature, organized elastic fibers. The generation of TEVGs, powered by the unlimited supply of hiPSC-derived VSMCs, has begun a new era in cellular therapy for vascular bypass and defective vessel segment replacement, aimed at addressing millions of cases of cardiovascular diseases across the globe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laslett LJ, Alagona P, Clark BA et al (2012) The worldwide environment of cardiovascular disease: prevalence, diagnosis, therapy, and policy issues: a report from the American College of Cardiology. J Am Coll Cardiol 60:S1–S49. https://doi.org/10.1016/j.jacc.2012.11.002

    Article  PubMed  Google Scholar 

  2. Akoh JA, Patel N (2010) Infection of hemodialysis arteriovenous grafts. J Vasc Access 11:155–158. https://doi.org/10.1177/112972981001100213

    Article  PubMed  Google Scholar 

  3. Wu J, Hu C, Tang Z et al (2018) Tissue-engineered vascular grafts: balance of the four major requirements. Colloid Interface Sci Commun 23:34–44. https://doi.org/10.1016/j.colcom.2018.01.005

    Article  CAS  Google Scholar 

  4. Luo J, Qin L, Zhao L et al (2020) Tissue-engineered vascular grafts with advanced mechanical strength from human iPSCs. Cell Stem Cell 26:251–261.e8. https://doi.org/10.1016/j.stem.2019.12.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bajpai VK, Andreadis ST (2012) Stem cell sources for vascular tissue engineering and regeneration. Tissue Eng Part B Rev 18:405–425. https://doi.org/10.1089/ten.teb.2011.0264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kretlow JD, Jin Y-Q, Liu W et al (2008) Donor age and cell passage affects differentiation potential of murine bone marrow-derived stem cells. BMC Cell Biol 9:60. https://doi.org/10.1186/1471-2121-9-60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ayoubi S, Sheikh SP, Eskildsen TV (2017) Human induced pluripotent stem cell-derived vascular smooth muscle cells: differentiation and therapeutic potential. Cardiovasc Res 113:1282–1293. https://doi.org/10.1093/cvr/cvx125

    Article  CAS  PubMed  Google Scholar 

  8. Dash BC, Jiang Z, Suh C, Qyang Y (2015) Induced pluripotent stem cell-derived vascular smooth muscle cells: methods and application. Biochem J 465:185–194. https://doi.org/10.1042/BJ20141078

    Article  CAS  PubMed  Google Scholar 

  9. Xie C-Q, Zhang J, Villacorta L et al (2007) A highly efficient method to differentiate smooth muscle cells from human embryonic stem cells. Arterioscler Thromb Vasc Biol 27:e311–e312. https://doi.org/10.1161/ATVBAHA.107.154260

    Article  CAS  PubMed  Google Scholar 

  10. Wang Y, Hu J, Jiao J et al (2014) Engineering vascular tissue with functional smooth muscle cells derived from human iPS cells and nanofibrous scaffolds. Biomaterials 35:8960–8969. https://doi.org/10.1016/j.biomaterials.2014.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dash BC, Levi K, Schwan J et al (2016) Tissue-engineered vascular rings from human iPSC-derived smooth muscle cells. Stem Cell Rep 7:19–28. https://doi.org/10.1016/j.stemcr.2016.05.004

    Article  CAS  Google Scholar 

  12. Gui L, Dash BC, Luo J et al (2016) Implantable tissue-engineered blood vessels from human induced pluripotent stem cells. Biomaterials 102:120–129. https://doi.org/10.1016/j.biomaterials.2016.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wanjare M, Kuo F, Gerecht S (2013) Derivation and maturation of synthetic and contractile vascular smooth muscle cells from human pluripotent stem cells. Cardiovasc Res 97:321–330. https://doi.org/10.1093/cvr/cvs315

    Article  CAS  PubMed  Google Scholar 

  14. Eoh JH, Shen N, Burke JA et al (2017) Enhanced elastin synthesis and maturation in human vascular smooth muscle tissue derived from induced-pluripotent stem cells. Acta Biomater 52:49–59. https://doi.org/10.1016/j.actbio.2017.01.083

    Article  CAS  PubMed  Google Scholar 

  15. Bajpai VK, Mistriotis P, Loh Y-H et al (2012) Functional vascular smooth muscle cells derived from human induced pluripotent stem cells via mesenchymal stem cell intermediates. Cardiovasc Res 96:391–400. https://doi.org/10.1093/cvr/cvs253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cheung C, Bernardo AS, Trotter MWB et al (2012) Generation of human vascular smooth muscle subtypes provides insight into embryological origin-dependent disease susceptibility. Nat Biotechnol 30:165–173. https://doi.org/10.1038/nbt.2107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cheung C, Bernardo AS, Pedersen RA, Sinha S (2014) Directed differentiation of embryonic origin–specific vascular smooth muscle subtypes from human pluripotent stem cells. Nat Protoc 9:929–938. https://doi.org/10.1038/nprot.2014.059

    Article  CAS  PubMed  Google Scholar 

  18. Patsch C, Challet-Meylan L, Thoma EC et al (2015) Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells. Nat Cell Biol 17:994–1003. https://doi.org/10.1038/ncb3205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vallier L, Touboul T, Chng Z et al (2009) Early cell fate decisions of human embryonic stem cells and mouse epiblast stem cells are controlled by the same signalling pathways. PLoS One 4(e):6082. https://doi.org/10.1371/journal.pone.0006082

    Article  CAS  Google Scholar 

  20. Bernardo AS, Faial T, Gardner L et al (2011) BRACHYURY and CDX2 mediate BMP-induced differentiation of human and mouse pluripotent stem cells into embryonic and extraembryonic lineages. Cell Stem Cell 9:144–155. https://doi.org/10.1016/j.stem.2011.06.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hinderer S, Seifert J, Votteler M et al (2014) Engineering of a bio-functionalized hybrid off-the-shelf heart valve. Biomaterials 35:2130–2139. https://doi.org/10.1016/j.biomaterials.2013.10.080

    Article  CAS  PubMed  Google Scholar 

  22. Hinderer S, Shena N, Ringuette L-J et al (2015) In vitro elastogenesis: instructing human vascular smooth muscle cells to generate an elastic fiber-containing extracellular matrix scaffold. Biomed Mater Bristol Engl 10:034102. https://doi.org/10.1088/1748-6041/10/3/034102

    Article  CAS  Google Scholar 

  23. Vo E, Hanjaya-Putra D, Zha Y et al (2010) Smooth-muscle-like cells derived from human embryonic stem cells support and augment cord-like structures in vitro. Stem Cell Rev Rep 6:237–247. https://doi.org/10.1007/s12015-010-9144-3

    Article  PubMed  Google Scholar 

  24. Gerecht-Nir S, Ziskind A, Cohen S, Itskovitz-Eldor J (2003) Human embryonic stem cells as an in vitro model for human vascular development and the induction of vascular differentiation. Lab Investig 83:1811–1820. https://doi.org/10.1097/01.LAB.0000106502.41391.F0

    Article  PubMed  Google Scholar 

  25. Chen P-Y, Qin L, Li G et al (2016) Fibroblast growth factor (FGF) signaling regulates transforming growth factor beta (TGFβ)-dependent smooth muscle cell phenotype modulation. Sci Rep 6:33407. https://doi.org/10.1038/srep33407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schlumberger W, Thie M, Rauterberg J, Robenek H (1991) Collagen synthesis in cultured aortic smooth muscle cells. Modulation by collagen lattice culture, transforming growth factor-beta 1, and epidermal growth factor. Arterioscler Thromb 11:1660–1666. https://doi.org/10.1161/01.atv.11.6.1660

    Article  CAS  PubMed  Google Scholar 

  27. Majesky MW (2007) Developmental basis of vascular smooth muscle diversity. Arterioscler Thromb Vasc Biol 27:1248–1258. https://doi.org/10.1161/ATVBAHA.107.141069

    Article  CAS  PubMed  Google Scholar 

  28. Beamish JA, He P, Kottke-Marchant K, Marchant RE (2010) Molecular regulation of contractile smooth muscle cell phenotype: implications for vascular tissue engineering. Tissue Eng Part B Rev 16:467–491. https://doi.org/10.1089/ten.teb.2009.0630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ryan AJ, O’Brien FJ (2015) Insoluble elastin reduces collagen scaffold stiffness, improves viscoelastic properties, and induces a contractile phenotype in smooth muscle cells. Biomaterials 73:296–307. https://doi.org/10.1016/j.biomaterials.2015.09.003

    Article  CAS  PubMed  Google Scholar 

  30. Lee AA, Graham DA, Dela Cruz S et al (2002) Fluid shear stress-induced alignment of cultured vascular smooth muscle cells. J Biomech Eng 124:37–43. https://doi.org/10.1115/1.1427697

    Article  PubMed  Google Scholar 

  31. Atchison L, Zhang H, Cao K, Truskey GA (2017) A tissue engineered blood vessel model of Hutchinson-Gilford progeria syndrome using human iPSC-derived smooth muscle cells. Sci Rep 7:8168. https://doi.org/10.1038/s41598-017-08632-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Deuse T, Hu X, Gravina A et al (2019) Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat Biotechnol 37:252–258. https://doi.org/10.1038/s41587-019-0016-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu H, Wang B, Ono M et al (2019) Targeted disruption of HLA genes via CRISPR-Cas 9 generates iPSCs with enhanced immune compatibility. Cell Stem Cell 24:566–578.e7. https://doi.org/10.1016/j.stem.2019.02.005

    Article  CAS  PubMed  Google Scholar 

  34. Gornalusse GG, Hirata RK, Funk S et al (2017) HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells. Nat Biotechnol 35:765–772. https://doi.org/10.1038/nbt.3860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yibing Qyang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Li, ML., Luo, J., Ellis, M.W., Riaz, M., Ajaj, Y., Qyang, Y. (2022). Methods for Differentiating hiPSCs into Vascular Smooth Muscle Cells. In: Zhao, F., Leong, K.W. (eds) Vascular Tissue Engineering. Methods in Molecular Biology, vol 2375. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1708-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1708-3_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1707-6

  • Online ISBN: 978-1-0716-1708-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics