Skip to main content

Fabrication of Small-Diameter Tubular Grafts for Vascular Tissue Engineering Applications Using Mulberry and Non-mulberry Silk Proteins

  • Protocol
  • First Online:
Vascular Tissue Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2375))

Abstract

Silk fibroin (SF) is a natural well-known biomaterial that has widely been explored for various tissue engineering applications with great success. Herein, we describe the methodology for fabricating two different types of tubular silk scaffolds aimed for vascular grafting. The first method emphasizes the use of very thin (10–15μm) silk films with unidirectional longitudinal micro-patterns, followed by their sequential rolling, which results in a multilayered tubular graft mimicking native-like cellular composition. The second method describes the fabrication of a bi-layered tubular scaffold comprising of a highly porous inner layer covered with an outer nanofibrous electrospun layer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mathers CD, Loncar D (2006) Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3(11):e442

    Article  Google Scholar 

  2. Veith FJ, Moss CM, Sprayregen S, Montefusco C (1979) Preoperative saphenous venography in arterial reconstructive surgery of the lower extremity. Surgery 85(3):253–256

    CAS  PubMed  Google Scholar 

  3. Lovett M, Cannizzaro C, Daheron L, Messmer B, Vunjak-Novakovic G, Kaplan DL (2007) Silk fibroin microtubes for blood vessel engineering. Biomaterials 28(35):5271–5279

    Article  CAS  Google Scholar 

  4. Shin’oka T, Imai Y, Ikada Y (2001) Transplantation of a tissue-engineered pulmonary artery. N Engl J Med 344(7):532–533

    Article  Google Scholar 

  5. Janani G, Kumar M, Chouhan D, Moses JC, Gangrade A, Bhattacharjee S, Mandal BB (2019) Insight into silk-based biomaterials: from physicochemical attributes to recent biomedical applications. ACS Appl Bio Mater 2(12):5460–5491

    Article  CAS  Google Scholar 

  6. Bandyopadhyay A, Chowdhury SK, Dey S, Moses JC, Mandal BB (2019) Silk: a promising biomaterial opening new vistas towards affordable healthcare solutions. J Indian Inst Sci:1–43

    Google Scholar 

  7. Rockwood DN, Preda RC, Yücel T, Wang X, Lovett ML, Kaplan DL (2011) Materials fabrication from Bombyx mori silk fibroin. Nat Protoc 6(10):1612

    Article  CAS  Google Scholar 

  8. Konwarh R, Bhunia BK, Mandal BB (2017) Opportunities and challenges in exploring Indian nonmulberry silk for biomedical applications. Proc Indian Natl Sci Acad 83(1)

    Google Scholar 

  9. Enomoto S, Sumi M, Kajimoto K, Nakazawa Y, Takahashi R, Takabayashi C, Asakura T, Sata M (2010) Long-term patency of small-diameter vascular graft made from fibroin, a silk-based biodegradable material. J Vasc Surg 51(1):155–164

    Article  Google Scholar 

  10. Rodriguez M, Kluge JA, Smoot D, Kluge MA, Schmidt DF, Paetsch CR, Kim PS, Kaplan DL (2020) Fabricating mechanically improved silk-based vascular grafts by solution control of the gel-spinning process. Biomaterials 230:119567

    Article  CAS  Google Scholar 

  11. Gupta P, Kumar M, Bhardwaj N, Kumar JP, Krishnamurthy C, Nandi SK, Mandal BB (2016) Mimicking form and function of native small diameter vascular conduits using mulberry and non-mulberry patterned silk films. ACS Appl Mater Interfaces 8(25):15874–15888

    Article  CAS  Google Scholar 

  12. Gupta P, Lorentz KL, Haskett DG, Cunnane EM, Ramaswamy AK, Weinbaum JS, Vorp DA, Mandal BB (2020) Bioresorbable silk grafts for small diameter vascular tissue engineering applications: In vitro and in vivo functional analysis. Acta Biomater 105:146–158

    Article  CAS  Google Scholar 

  13. Mandal BB, Kundu S (2008) A novel method for dissolution and stabilization of non-mulberry silk gland protein fibroin using anionic surfactant sodium dodecyl sulfate. Biotechnol Bioeng 99(6):1482–1489

    Article  CAS  Google Scholar 

  14. Hao H, Ropraz P, Verin V, Camenzind E, Geinoz A, Pepper MS, Gabbiani G, Bochaton-Piallat M-L (2002) Heterogeneity of smooth muscle cell populations cultured from pig coronary artery. Arterioscler Thromb Vasc Biol 22(7):1093–1099

    Article  CAS  Google Scholar 

  15. Butcher JT, Nerem RM (2004) Porcine aortic valve interstitial cells in three-dimensional culture: comparison of phenotype with aortic smooth muscle cells. J Heart Valve Dis 13(3):478–486

    PubMed  Google Scholar 

  16. Gupta P, Moses JC, Mandal BB (2019) Surface patterning and innate physicochemical attributes of silk films concomitantly govern vascular cell dynamics. ACS Biomater Sci Eng 5(2):933–949

    Article  CAS  Google Scholar 

  17. Bhunia BK, Mandal BB (2019) Exploring gelation and physicochemical behavior of in situ bioresponsive silk hydrogels for disc degeneration therapy. ACS Biomater Sci Eng 5(2):870–886

    Article  CAS  Google Scholar 

  18. Kumar M, Gupta P, Bhattacharjee S, Nandi SK, Mandal BB (2018) Immunomodulatory injectable silk hydrogels maintaining functional islets and promoting anti-inflammatory M2 macrophage polarization. Biomaterials 187:1–17

    Article  CAS  Google Scholar 

  19. Chouhan D, Lohe T, Samudrala PK, Mandal BB (2018) In situ forming injectable silk fibroin hydrogel promotes skin regeneration in full thickness burn wounds. Adv Healthc Mater 7(24):1801092

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the laboratory of Prof. David A. Vorp (University of Pittsburgh, USA) for suggestions during the development of Graft II described in this chapter. P.G. acknowledges the Ministry of Education (MoE), Government of India; the Institute of International Education (IIE), New York; and the United States-India Educational Foundation (USIEF) for research fellowship. B.B.M. acknowledges funding support from the Department of Biotechnology (DBT) and Department of Science and Technology (DST), Government of India. We have filed Indian patents for Graft I (application number 1246/KOL/2015) and Graft II (with or without modifications, application number 201931024432) fabrication methodologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biman B. Mandal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gupta, P., Mandal, B.B. (2022). Fabrication of Small-Diameter Tubular Grafts for Vascular Tissue Engineering Applications Using Mulberry and Non-mulberry Silk Proteins. In: Zhao, F., Leong, K.W. (eds) Vascular Tissue Engineering. Methods in Molecular Biology, vol 2375. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1708-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1708-3_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1707-6

  • Online ISBN: 978-1-0716-1708-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics