Skip to main content

Biofabrication of 3D Human Muscle Model with Vascularization and Endomysium

  • Protocol
  • First Online:
Organ-on-a-Chip

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2373))

Abstract

This protocol describes the biofabrication of 3D millimeter-scale human muscle units, embedding non-planar muscle fibers wrapped by fibroblasts-rich endomysium and intertwined with microvascular networks. Suspended muscle fibers are formed through the self-assembly of human myoblasts within cylindrical cavities generated in a sacrificial gelatin template cast in a 3D printed frame. Following myotube differentiation, muscle fibers are embedded in a 3D matrix containing endothelial cells and muscle-derived fibroblasts. The cellular complexity of the environment is instrumental to drive fibroblast migration towards muscle fibers and to induce the organ-specific differentiation of endothelial cells. This advanced 3D muscle model can be applied to analyze the biological mechanisms underlying specific muscle diseases which involve a complex remodeling of the muscle environment (e.g., muscular dystrophies and fibrosis) whereby the pathological interplay among different cell populations drives the onset and progression of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Loufrani L, Dubroca C, You D et al (2004) Absence of dystrophin in mice reduces NO-dependent vascular function and vascular density: Total recovery after a treatment with the aminoglycoside gentamicin. Arterioscler Thromb Vasc Biol 24:671–676. https://doi.org/10.1161/01.ATV.0000118683.99628.42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Matsakas A, Yadav V, Lorca S, Narkar V (2013) Muscle ERRγ mitigates Duchenne muscular dystrophy via metabolic and angiogenic reprogramming. FASEB J 27:4004–4016. https://doi.org/10.1096/fj.13-228296

    Article  CAS  PubMed  Google Scholar 

  3. Sternbergh WC, Adelman B (1992) The temporal relationship between endothelial cell dysfunction and skeletal muscle damage after ischemia and reperfusion. J Vasc Surg 16:30–39. https://doi.org/10.1016/0741-5214(92)90414-4

    Article  PubMed  Google Scholar 

  4. Murphy MM, Lawson JA, Mathew SJ et al (2011) Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138:3625–3637. https://doi.org/10.1242/dev.064162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Klingler W, Jurkat-Rott K, Lehmann-Horn F, Schleip R (2012) The role of fibrosis in Duchenne muscular dystrophy. Acta Myol 31:184–195

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Visone R, Gilardi M, Marsano A et al (2016) Cardiac meets skeletal: What’s new in microfluidic models for muscle tissue engineering. Molecules 21:1128. https://doi.org/10.3390/molecules21091128

    Article  CAS  PubMed Central  Google Scholar 

  7. Bersini S, Arrigoni C, Lopa S et al (2016) Engineered miniaturized models of musculoskeletal diseases. Drug Discov Today 21:1429–1436. https://doi.org/10.1016/j.drudis.2016.04.015

    Article  CAS  PubMed  Google Scholar 

  8. Levenberg S, Rouwkema J, Macdonald M et al (2005) Engineering vascularized skeletal muscle tissue. Nat Biotechnol 23:879–884. https://doi.org/10.1038/nbt1109

    Article  CAS  PubMed  Google Scholar 

  9. Shandalov Y, Egozi D, Koffler J et al (2014) An engineered muscle flap for reconstruction of large soft tissue defects. Proc Natl Acad Sci U S A 111:6010–6015. https://doi.org/10.1073/pnas.1402679111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Eyckmans J, Chen CS (2017) 3D culture models of tissues under tension. J Cell Sci 130:63–70. https://doi.org/10.1242/jcs.198630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gholobova D, Decroix L, Van Muylder V et al (2015) Endothelial network formation within human tissue-engineered skeletal muscle. Tissue Eng Part A 21:2548–2558. https://doi.org/10.1089/ten.tea.2015.0093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gholobova D, Gerard M, Decroix L et al (2018) Human tissue-engineered skeletal muscle: a novel 3D in vitro model for drug disposition and toxicity after intramuscular injection. Sci Rep 8:12206. https://doi.org/10.1038/s41598-018-30123-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bersini S, Gilardi M, Arrigoni C et al (2016) Human in vitro 3D co-culture model to engineer vascularized bone-mimicking tissues combining computational tools and statistical experimental approach. Biomaterials 76:157–172. https://doi.org/10.1016/j.biomaterials.2015.10.057

    Article  CAS  PubMed  Google Scholar 

  14. Bongio M, Lopa S, Gilardi M et al (2016) A 3D vascularized bone remodeling model combining osteoblasts and osteoclasts in a CaP nanoparticle-enriched matrix. Nanomedicine 11:1073–1091. https://doi.org/10.2217/nnm-2015-0021

    Article  CAS  PubMed  Google Scholar 

  15. Marchetto A, Ohmura S, Orth MF et al (2020) Oncogenic hijacking of a developmental transcription factor evokes vulnerability toward oxidative stress in Ewing sarcoma. Nat Commun 11:2423. https://doi.org/10.1038/s41467-020-16244-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bersini S, Gilardi M, Ugolini GS et al (2018) Engineering an environment for the study of fibrosis: a 3D human muscle model with endothelium specificity and endomysium. Cell Rep 25:3858–3868. https://doi.org/10.1016/j.celrep.2018.11.092

    Article  CAS  PubMed  Google Scholar 

  17. Bersini S, Gilardi M, Mora M et al (2018) Tackling muscle fibrosis: from molecular mechanisms to next generation engineered models to predict drug delivery. Adv Drug Deliv Rev 129:64–77. https://doi.org/10.1016/j.addr.2018.02.009

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 860715.

Images were adapted from Engineering an Environment for the Study of Fibrosis: A 3D Human Muscle Model with Endothelium Specificity and Endomysium; Bersini, Gilardi, Ugolini, Sansoni, Talò, Perego, Zanotti, Ostano, Mora, Soncini, Vanoni, Lombardi, Moretti; Cell Reports, Volume 25, 3858-3868, Copyright 2018, with permission from Elsevier, Creative Commons CC-BY-NC-ND license.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Moretti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bersini, S., Francescato, R., Moretti, M. (2022). Biofabrication of 3D Human Muscle Model with Vascularization and Endomysium. In: Rasponi, M. (eds) Organ-on-a-Chip. Methods in Molecular Biology, vol 2373. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1693-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1693-2_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1692-5

  • Online ISBN: 978-1-0716-1693-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics