Skip to main content

Three Methods for the Solution Phase Synthesis of Cyclic Peptides

  • 994 Accesses

Part of the Methods in Molecular Biology book series (MIMB,volume 2371)

Abstract

Cyclic peptides, which often exhibit interesting biological properties, can be obtained by macrolactamization of adequately protected linear peptide chains. Because of the remarkable biological properties, methods for the efficient cyclization of peptides are of high interest. We herein describe three different protocols for the cyclization of peptides and depsipeptides via amide bond formation. These methods can, in principal, be applied to any linear peptide chain.

Key words

  • Cyclopeptides
  • Cyclodepsipeptides
  • Macrocyclization of peptides
  • Macrolactamization
  • Peptide coupling

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-1689-5_4
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-1689-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Dang T, Süssmuth RD (2017) Bioactive peptide natural products as lead structures for medicinal use. Acc Chem Res 50(7):1566–1576. https://doi.org/10.1021/acs.accounts.7b00159

    CAS  CrossRef  PubMed  Google Scholar 

  2. Lambert JN, Mitchell JP, Roberts KD (2001) The synthesis of cyclic peptides. J Chem Soc Perkin Trans 1(5):471–484. https://doi.org/10.1039/b001942i

    CrossRef  Google Scholar 

  3. Davies JS (2003) The cyclization of peptides and depsipeptides. J Pept Sci 9(8):471–501. https://doi.org/10.1002/psc.491

    CAS  CrossRef  PubMed  Google Scholar 

  4. White CJ, Yudin AK (2011) Contemporary strategies for peptide macrocyclization. Nat Chem 3(7):509–524. https://doi.org/10.1038/nchem.1062

    CAS  CrossRef  PubMed  Google Scholar 

  5. Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, Camarero JA, Campopiano DJ, Challis GL, Clardy J, Cotter PD, Craik DJ, Dawson M, Dittmann E, Donadio S, Dorrestein PC, Entian K-D, Fischbach MA, Garavelli JS, Göransson U, Gruber CW, Haft DH, Hemscheidt TK, Hertweck C, Hill C, Horswill AR, Jaspars M, Kelly WL, Klinman JP, Kuipers OP, Link AJ, Liu W, Marahiel MA, Mitchell DA, Moll GN, Moore BS, Müller R, Nair SK, Nes IF, Norris GE, Olivera BM, Onaka H, Patchett ML, Piel J, Reaney MJT, Rebuffat S, Ross RP, Sahl H-G, Schmidt EW, Selsted ME, Severinov K, Shen B, Sivonen K, Smith L, Stein T, Süssmuth RD, Tagg JR, Tang G-L, Truman AW, Vederas JC, Walsh CT, Walton JD, Wenzel SC, Willey JM, van der Donk WA (2013) Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 30(1):108–160. https://doi.org/10.1039/c2np20085f

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  6. Süssmuth RD, Mainz A (2017) Nonribosomal peptide synthesis—principles and prospects. Angew Chem Int Ed 56 (14):3770-3821. doi:10.1002/anie.201609079. Angew Chem 129(14):3824–3878. https://doi.org/10.1002/ange.201609079

    CrossRef  Google Scholar 

  7. Vinogradov AA, Yin Y, Suga H (2019) Macrocyclic peptides as drug candidates: recent progress and remaining challenges. J Am Chem Soc 141(10):4167–4181. https://doi.org/10.1021/jacs.8b13178

    CAS  CrossRef  PubMed  Google Scholar 

  8. Tyndall JDA, Nall T, Fairlie DP (2005) Proteases universally recognize beta strands in their active sites. Chem Rev 105(3):973–1000. https://doi.org/10.1021/cr040669e

    CAS  CrossRef  PubMed  Google Scholar 

  9. Chakraborty S, Lin SH, Shiuan D, Tai DF (2015) Syntheses of some α-cyclic tripeptides as potential inhibitors for HMG-CoA reductase. Amino Acids 47(8):1495–1505. https://doi.org/10.1007/s00726-015-1977-2

    CAS  CrossRef  PubMed  Google Scholar 

  10. Schmidt U, Langer J (1997) Cyclotetrapeptides and cyclopentapeptides: occurrence and synthesis. J Pept Res 49(1):67–73. https://doi.org/10.1111/j.1399-3011.1997.tb01122.x

    CAS  CrossRef  PubMed  Google Scholar 

  11. Rothe M, Steffen K-D, Rothe I (1965) Synthesis of cyclotri-L-prolyl, a cyclotripeptide having a nine-membered ring. Angew Chem Int Ed Engl 4(4):356–356. doi:10.1002/anie.196503561. Angew Chem 77(7):347–348. https://doi.org/10.1002/ange.19650770718

    CAS  CrossRef  Google Scholar 

  12. Ziegler K, Eberle H, Ohlinger H (1933) Über vielgliedrige Ringsysteme. I. Die präparativ ergiebige Synthese der Polymethylenketone mit mehr als 6 Ringgliedern. Justus Liebigs Ann Chem 504(1):94–130. https://doi.org/10.1002/jlac.19335040109

    CAS  CrossRef  Google Scholar 

  13. Schmidt U, Griesser H, Lieberknecht A, Talbiersky J (1981) A novel method for preparation of ansapeptides; synthesis of model peptide alkaloids. Angew Chem Int Ed Engl 20(3):280-281. doi:10.1002/anie.198102801. Angew Chem 93(3):271–272. https://doi.org/10.1002/ange.19810930308

    CAS  CrossRef  Google Scholar 

  14. Kappler S, Karmann L, Prudel C, Herrmann J, Caddeu G, Müller R, Vollmar AM, Zahler S, Kazmaier U (2018) Synthesis and biological evaluation of modified miuraenamides. Eur J Org Chem 2018(48):6952–6965. https://doi.org/10.1002/ejoc.201801391

    CAS  CrossRef  Google Scholar 

  15. Servatius P, Kazmaier U (2018) Total synthesis of the natural HDAC inhibitor Cyl-1. Org Biomol Chem 16(18):3464–3472. https://doi.org/10.1039/c8ob00391b

    CAS  CrossRef  PubMed  Google Scholar 

  16. Junk L, Kazmaier U (2018) Total synthesis of keramamides A and L from a common precursor by late-stage Indole synthesis and configurational revision. Angew Chem Int Ed 57(35):11432-11435. doi:10.1002/anie.201806657. Angew Chem 130(35):11602–11606. https://doi.org/10.1002/ange.201806657

    CrossRef  Google Scholar 

  17. Quirin C, Kazmaier U (2009) Synthesis of chlamydocin by chelate-claisen rearrangement. Eur J Org Chem 2009(3):371–377. https://doi.org/10.1002/ejoc.200800890

    CAS  CrossRef  Google Scholar 

  18. Servatius P, Kazmaier U (2018) Total synthesis of Trapoxin A, a fungal HDAC inhibitor from Helicoma ambiens. J Org Chem 83(18):11341–11349. https://doi.org/10.1021/acs.joc.8b01569

    CAS  CrossRef  PubMed  Google Scholar 

  19. Han S-Y, Kim Y-A (2004) Recent development of peptide coupling reagents in organic synthesis. Tetrahedron 60(11):2447–2467. https://doi.org/10.1016/j.tet.2004.01.020

    CAS  CrossRef  Google Scholar 

  20. El-Faham A, Albericio F (2011) Peptide coupling reagents, more than a letter soup. Chem Rev 111(11):6557–6602. https://doi.org/10.1021/cr100048w

    CAS  CrossRef  PubMed  Google Scholar 

  21. Gorges J, Kazmaier U (2018) Matteson homologation-based total synthesis of lagunamide A. Org Lett 20(7):2033–2036. https://doi.org/10.1021/acs.orglett.8b00576

    CAS  CrossRef  PubMed  Google Scholar 

  22. Barbie P, Kazmaier U (2016) Total synthesis of cyclomarin A, a marine cycloheptapeptide with anti-tuberculosis and anti-malaria activity. Org Lett 18(2):204–207. https://doi.org/10.1021/acs.orglett.5b03292

    CAS  CrossRef  PubMed  Google Scholar 

  23. Barbie P, Kazmaier U (2016) Total synthesis of cyclomarins A, C and D, marine cyclic peptides with interesting anti-tuberculosis and anti-malaria activities. Org Biomol Chem 14(25):6036–6054. https://doi.org/10.1039/c6ob00800c

    CAS  CrossRef  PubMed  Google Scholar 

  24. Barbie P, Kazmaier U (2016) Total synthesis of desoxycyclomarin C and the cyclomarazines A and B. Org Biomol Chem 14(25):6055–6064. https://doi.org/10.1039/c6ob00801a

    CAS  CrossRef  PubMed  Google Scholar 

  25. Kiefer A, Kazmaier U (2018) Synthesis of modified β-methoxyphenylalanines via diazonium chemistry and their incorporation in desoxycyclomarin analogues. Org Biomol Chem 17(1):88–102. https://doi.org/10.1039/c8ob02777c

    CAS  CrossRef  PubMed  Google Scholar 

  26. Kiefer A, Bader CD, Held J, Esser A, Rybniker J, Empting M, Muller R, Kazmaier U (2019) Synthesis of new cyclomarin derivatives and their biological evaluation towards mycobacterium tuberculosis and Plasmodium Falciparum. Chem Eur J 25(37):8894–8902. https://doi.org/10.1002/chem.201901640

    CAS  CrossRef  PubMed  Google Scholar 

  27. Becker D, Kazmaier U (2015) Synthesis of simplified halogenated chondramide derivatives with strong cytostatic properties. Eur J Org Chem 2015(12):2591–2602. https://doi.org/10.1002/ejoc.201403577

    CAS  CrossRef  Google Scholar 

  28. Becker D, Kazmaier U (2015) Synthesis and biological evaluation of dichlorinated chondramide derivatives. Eur J Org Chem 2015(19):4198–4213. https://doi.org/10.1002/ejoc.201500369

    CAS  CrossRef  Google Scholar 

  29. Junk L, Kazmaier U (2019) Total synthesis and configurational revision of mozamide A, a hydroxy-brunsvicamide. J Org Chem 84(5):2489–2500. https://doi.org/10.1021/acs.joc.8b02836

    CAS  CrossRef  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Saarland University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelika Ullrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Ullrich, A., Junk, L., Kazmaier, U. (2022). Three Methods for the Solution Phase Synthesis of Cyclic Peptides. In: Coppock, M.B., Winton, A.J. (eds) Peptide Macrocycles. Methods in Molecular Biology, vol 2371. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1689-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1689-5_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1688-8

  • Online ISBN: 978-1-0716-1689-5

  • eBook Packages: Springer Protocols