Dang T, Süssmuth RD (2017) Bioactive peptide natural products as lead structures for medicinal use. Acc Chem Res 50(7):1566–1576. https://doi.org/10.1021/acs.accounts.7b00159
CAS
CrossRef
PubMed
Google Scholar
Lambert JN, Mitchell JP, Roberts KD (2001) The synthesis of cyclic peptides. J Chem Soc Perkin Trans 1(5):471–484. https://doi.org/10.1039/b001942i
CrossRef
Google Scholar
Davies JS (2003) The cyclization of peptides and depsipeptides. J Pept Sci 9(8):471–501. https://doi.org/10.1002/psc.491
CAS
CrossRef
PubMed
Google Scholar
White CJ, Yudin AK (2011) Contemporary strategies for peptide macrocyclization. Nat Chem 3(7):509–524. https://doi.org/10.1038/nchem.1062
CAS
CrossRef
PubMed
Google Scholar
Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, Camarero JA, Campopiano DJ, Challis GL, Clardy J, Cotter PD, Craik DJ, Dawson M, Dittmann E, Donadio S, Dorrestein PC, Entian K-D, Fischbach MA, Garavelli JS, Göransson U, Gruber CW, Haft DH, Hemscheidt TK, Hertweck C, Hill C, Horswill AR, Jaspars M, Kelly WL, Klinman JP, Kuipers OP, Link AJ, Liu W, Marahiel MA, Mitchell DA, Moll GN, Moore BS, Müller R, Nair SK, Nes IF, Norris GE, Olivera BM, Onaka H, Patchett ML, Piel J, Reaney MJT, Rebuffat S, Ross RP, Sahl H-G, Schmidt EW, Selsted ME, Severinov K, Shen B, Sivonen K, Smith L, Stein T, Süssmuth RD, Tagg JR, Tang G-L, Truman AW, Vederas JC, Walsh CT, Walton JD, Wenzel SC, Willey JM, van der Donk WA (2013) Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 30(1):108–160. https://doi.org/10.1039/c2np20085f
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Süssmuth RD, Mainz A (2017) Nonribosomal peptide synthesis—principles and prospects. Angew Chem Int Ed 56 (14):3770-3821. doi:10.1002/anie.201609079. Angew Chem 129(14):3824–3878. https://doi.org/10.1002/ange.201609079
CrossRef
Google Scholar
Vinogradov AA, Yin Y, Suga H (2019) Macrocyclic peptides as drug candidates: recent progress and remaining challenges. J Am Chem Soc 141(10):4167–4181. https://doi.org/10.1021/jacs.8b13178
CAS
CrossRef
PubMed
Google Scholar
Tyndall JDA, Nall T, Fairlie DP (2005) Proteases universally recognize beta strands in their active sites. Chem Rev 105(3):973–1000. https://doi.org/10.1021/cr040669e
CAS
CrossRef
PubMed
Google Scholar
Chakraborty S, Lin SH, Shiuan D, Tai DF (2015) Syntheses of some α-cyclic tripeptides as potential inhibitors for HMG-CoA reductase. Amino Acids 47(8):1495–1505. https://doi.org/10.1007/s00726-015-1977-2
CAS
CrossRef
PubMed
Google Scholar
Schmidt U, Langer J (1997) Cyclotetrapeptides and cyclopentapeptides: occurrence and synthesis. J Pept Res 49(1):67–73. https://doi.org/10.1111/j.1399-3011.1997.tb01122.x
CAS
CrossRef
PubMed
Google Scholar
Rothe M, Steffen K-D, Rothe I (1965) Synthesis of cyclotri-L-prolyl, a cyclotripeptide having a nine-membered ring. Angew Chem Int Ed Engl 4(4):356–356. doi:10.1002/anie.196503561. Angew Chem 77(7):347–348. https://doi.org/10.1002/ange.19650770718
CAS
CrossRef
Google Scholar
Ziegler K, Eberle H, Ohlinger H (1933) Über vielgliedrige Ringsysteme. I. Die präparativ ergiebige Synthese der Polymethylenketone mit mehr als 6 Ringgliedern. Justus Liebigs Ann Chem 504(1):94–130. https://doi.org/10.1002/jlac.19335040109
CAS
CrossRef
Google Scholar
Schmidt U, Griesser H, Lieberknecht A, Talbiersky J (1981) A novel method for preparation of ansapeptides; synthesis of model peptide alkaloids. Angew Chem Int Ed Engl 20(3):280-281. doi:10.1002/anie.198102801. Angew Chem 93(3):271–272. https://doi.org/10.1002/ange.19810930308
CAS
CrossRef
Google Scholar
Kappler S, Karmann L, Prudel C, Herrmann J, Caddeu G, Müller R, Vollmar AM, Zahler S, Kazmaier U (2018) Synthesis and biological evaluation of modified miuraenamides. Eur J Org Chem 2018(48):6952–6965. https://doi.org/10.1002/ejoc.201801391
CAS
CrossRef
Google Scholar
Servatius P, Kazmaier U (2018) Total synthesis of the natural HDAC inhibitor Cyl-1. Org Biomol Chem 16(18):3464–3472. https://doi.org/10.1039/c8ob00391b
CAS
CrossRef
PubMed
Google Scholar
Junk L, Kazmaier U (2018) Total synthesis of keramamides A and L from a common precursor by late-stage Indole synthesis and configurational revision. Angew Chem Int Ed 57(35):11432-11435. doi:10.1002/anie.201806657. Angew Chem 130(35):11602–11606. https://doi.org/10.1002/ange.201806657
CrossRef
Google Scholar
Quirin C, Kazmaier U (2009) Synthesis of chlamydocin by chelate-claisen rearrangement. Eur J Org Chem 2009(3):371–377. https://doi.org/10.1002/ejoc.200800890
CAS
CrossRef
Google Scholar
Servatius P, Kazmaier U (2018) Total synthesis of Trapoxin A, a fungal HDAC inhibitor from Helicoma ambiens. J Org Chem 83(18):11341–11349. https://doi.org/10.1021/acs.joc.8b01569
CAS
CrossRef
PubMed
Google Scholar
Han S-Y, Kim Y-A (2004) Recent development of peptide coupling reagents in organic synthesis. Tetrahedron 60(11):2447–2467. https://doi.org/10.1016/j.tet.2004.01.020
CAS
CrossRef
Google Scholar
El-Faham A, Albericio F (2011) Peptide coupling reagents, more than a letter soup. Chem Rev 111(11):6557–6602. https://doi.org/10.1021/cr100048w
CAS
CrossRef
PubMed
Google Scholar
Gorges J, Kazmaier U (2018) Matteson homologation-based total synthesis of lagunamide A. Org Lett 20(7):2033–2036. https://doi.org/10.1021/acs.orglett.8b00576
CAS
CrossRef
PubMed
Google Scholar
Barbie P, Kazmaier U (2016) Total synthesis of cyclomarin A, a marine cycloheptapeptide with anti-tuberculosis and anti-malaria activity. Org Lett 18(2):204–207. https://doi.org/10.1021/acs.orglett.5b03292
CAS
CrossRef
PubMed
Google Scholar
Barbie P, Kazmaier U (2016) Total synthesis of cyclomarins A, C and D, marine cyclic peptides with interesting anti-tuberculosis and anti-malaria activities. Org Biomol Chem 14(25):6036–6054. https://doi.org/10.1039/c6ob00800c
CAS
CrossRef
PubMed
Google Scholar
Barbie P, Kazmaier U (2016) Total synthesis of desoxycyclomarin C and the cyclomarazines A and B. Org Biomol Chem 14(25):6055–6064. https://doi.org/10.1039/c6ob00801a
CAS
CrossRef
PubMed
Google Scholar
Kiefer A, Kazmaier U (2018) Synthesis of modified β-methoxyphenylalanines via diazonium chemistry and their incorporation in desoxycyclomarin analogues. Org Biomol Chem 17(1):88–102. https://doi.org/10.1039/c8ob02777c
CAS
CrossRef
PubMed
Google Scholar
Kiefer A, Bader CD, Held J, Esser A, Rybniker J, Empting M, Muller R, Kazmaier U (2019) Synthesis of new cyclomarin derivatives and their biological evaluation towards mycobacterium tuberculosis and Plasmodium Falciparum. Chem Eur J 25(37):8894–8902. https://doi.org/10.1002/chem.201901640
CAS
CrossRef
PubMed
Google Scholar
Becker D, Kazmaier U (2015) Synthesis of simplified halogenated chondramide derivatives with strong cytostatic properties. Eur J Org Chem 2015(12):2591–2602. https://doi.org/10.1002/ejoc.201403577
CAS
CrossRef
Google Scholar
Becker D, Kazmaier U (2015) Synthesis and biological evaluation of dichlorinated chondramide derivatives. Eur J Org Chem 2015(19):4198–4213. https://doi.org/10.1002/ejoc.201500369
CAS
CrossRef
Google Scholar
Junk L, Kazmaier U (2019) Total synthesis and configurational revision of mozamide A, a hydroxy-brunsvicamide. J Org Chem 84(5):2489–2500. https://doi.org/10.1021/acs.joc.8b02836
CAS
CrossRef
PubMed
Google Scholar