Skip to main content

Cyclization and Self-Assembly of Cyclic Peptides

  • Protocol
  • First Online:
Peptide Macrocycles

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2371))

Abstract

Cyclic peptides are a fascinating class of molecules that can be programmed to fold or self-assemble into diverse mono- and multidimensional structures with potential applications in biomedicine, nanoelectronics, or catalysis. Herein we describe on-resin procedures to carry out head-to-tail peptide cyclization based on orthogonal protected linear structures. We also present essential characterization tools for obtaining dynamic and structural information, including the visualization cyclic peptide assembly into nanotubes (AFM, TEM) as well as the use of fluorescence microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thorstholm L, Craik DJ (2012) Discovery and applications of naturally occurring cyclic peptides. Drug Discov Today Technol 9:e13–e21. https://doi.org/10.1016/j.ddtec.2011.07.005

    Article  CAS  Google Scholar 

  2. Claro B, Bastos M, Garcia-Fandino R (2018) Design and applications of cyclic peptides. Pept Appl Biomed Biotechnol Bioeng:87–129 https://doi.org/10.1016/b978-0-08-100736-5.00004-1

  3. Tyndall JDA, Nall T, Fairlie DP (2005) Proteases universally recognize beta strands in their active sites. Chem Rev 105:973–1000. https://doi.org/10.1021/cr040669e

    Article  CAS  PubMed  Google Scholar 

  4. Hill TA, Shepherd NE, Diness F, Fairlie DP (2014) Constraining cyclic peptides to mimic protein structure motifs. Angew Chem Int Ed 53:13020–13041. https://doi.org/10.1002/anie.201401058

    Article  CAS  Google Scholar 

  5. Hamada Y, Shioiri T (2005) Recent progress of the synthetic studies of biologically active marine cyclic peptides and depsipeptides. Chem Rev 105:4441–4482. https://doi.org/10.1021/cr0406312

    Article  CAS  PubMed  Google Scholar 

  6. Marsault E, Peterson ML (2011) Macrocycles are great cycles: applications, opportunities, and challenges of synthetic macrocycles in drug discovery. J Med Chem 54:1961–2004. https://doi.org/10.1021/jm1012374

    Article  CAS  PubMed  Google Scholar 

  7. Acar H, Srivastava S, Chung EJ et al (2017) Self-assembling peptide-based building blocks in medical applications. Adv Drug Deliv Rev 110–111:65–79. https://doi.org/10.1016/j.addr.2016.08.006

    Article  CAS  PubMed  Google Scholar 

  8. Ghadiri MR, Granja JR, Milligan RA et al (1993) Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 366:324–327. https://doi.org/10.1038/366324a0

    Article  CAS  PubMed  Google Scholar 

  9. Ghadiri MR, Granja JR, Buehler LK (1994) Artificial transmembrane ion channels from self-assembling peptide nanotubes. Nature 369:301–304. https://doi.org/10.1038/369301a0

    Article  CAS  PubMed  Google Scholar 

  10. Montenegro J, Ghadiri MR, Granja JR (2013) Ion channel models based on self-assembling cyclic peptide nanotubes. Acc Chem Res 46:2955–2965. https://doi.org/10.1021/ar400061d

    Article  CAS  PubMed  Google Scholar 

  11. Fernandez-Lopez S, Kim H-S, Choi EC et al (2001) Antibacterial agents based on the cyclic d,l-α-peptide architecture. Nature 412:452–455. https://doi.org/10.1038/35086601

    Article  CAS  PubMed  Google Scholar 

  12. Larnaudie SC, Brendel JC, Romero-Canelón I et al (2018) Cyclic peptide–polymer nanotubes as efficient and highly potent drug delivery systems for organometallic anticancer complexes. Biomacromolecules 19:239–247. https://doi.org/10.1021/acs.biomac.7b01491

    Article  CAS  PubMed  Google Scholar 

  13. Zhao Y, Leman LJ, Search DJ et al (2017) Self-assembling cyclic d,l-α-peptides as modulators of plasma HDL function. A supramolecular approach toward antiatherosclerotic agents. ACS Cent Sci 3:639–646. https://doi.org/10.1021/acscentsci.7b00154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Horne WS, Wiethoff CM, Cui C et al (2005) Antiviral cyclic d,l-α-peptides: targeting a general biochemical pathway in virus infections. Bioorg Med Chem 13:5145–5153. https://doi.org/10.1016/j.bmc.2005.05.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li M, Ehlers M, Schlesiger S et al (2015) Incorporation of a non-natural arginine analogue into a cyclic peptide leads to formation of positively charged nanofibers capable of gene transfection. Angew Chem Int Ed 55:598–601. https://doi.org/10.1002/anie.201508714

    Article  CAS  Google Scholar 

  16. Reiriz C, Brea RJ, Arranz R et al (2009) α,γ-peptide nanotube templating of one-dimensional parallel fullerene arrangements. J Am Chem Soc 131:11335–11337. https://doi.org/10.1021/ja904548q

    Article  CAS  PubMed  Google Scholar 

  17. Montenegro J, Vázquez-Vázquez C, Kalinin A et al (2014) Coupling of carbon and peptide nanotubes. J Am Chem Soc 136:2484–2491. https://doi.org/10.1021/ja410901r

    Article  CAS  PubMed  Google Scholar 

  18. Cuerva M, García-Fandiño R, Vázquez-Vázquez C et al (2015) Self-assembly of silver metal clusters of small atomicity on cyclic peptide nanotubes. ACS Nano 9:10834–10843. https://doi.org/10.1021/acsnano.5b03445

    Article  CAS  PubMed  Google Scholar 

  19. Fuertes A, Juanes M, Granja JR, Montenegro J (2017) Supramolecular functional assemblies: dynamic membrane transporters and peptide nanotubular composites. Chem Commun 53:7861–7871. https://doi.org/10.1039/C7CC02997G

    Article  CAS  Google Scholar 

  20. Chapman R, Jolliffe KA, Perrier S (2011) Modular design for the controlled production of polymeric nanotubes from polymer/peptide conjugates. Polym Chem 2:1956–1963. https://doi.org/10.1039/c1py00202c

    Article  CAS  Google Scholar 

  21. Chapman R, Jolliffe KA, Perrier S (2013) Multi-shell soft nanotubes from cyclic peptide templates. Adv Mater 25:1170–1172. https://doi.org/10.1002/adma.201204094

    Article  CAS  PubMed  Google Scholar 

  22. Danial M, My-Nhi Tran C, Young PG et al (2013) Janus cyclic peptide–polymer nanotubes. Nat Commun 4:2780. https://doi.org/10.1038/ncomms3780

    Article  CAS  PubMed  Google Scholar 

  23. Lamas A, Guerra A, Amorín M, Granja JR (2018) New self-assembling peptide nanotubes of large diameter using δ-amino acids. Chem Sci 9:8228–8233. https://doi.org/10.1039/c8sc02276c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pizzi A, Ozores HL, Calvelo M et al (2019) Tight xenon confinement in a crystalline sandwich-like hydrogen-bonded dimeric capsule of a cyclic peptide. Angew Chem Int Ed 58:14472–14476. https://doi.org/10.1002/anie.201906599

    Article  CAS  Google Scholar 

  25. Davies JS (2003) The cyclization of peptides and depsipeptides. J Pept Sci 9:471–501. https://doi.org/10.1002/psc.491

    Article  CAS  PubMed  Google Scholar 

  26. White CJ, Yudin AK (2011) Contemporary strategies for peptide macrocyclization. Nat Chem 3:509–524. https://doi.org/10.1038/nchem.1062

    Article  CAS  PubMed  Google Scholar 

  27. Rivera DG, Ojeda-Carralero GM, Reguera L, der Eycken EV (2020) Peptide macrocyclization by transition metal catalysis. Chem Soc Rev 49:2039–2059. https://doi.org/10.1039/c9cs00366e

    Article  CAS  PubMed  Google Scholar 

  28. Chow HY, Zhang Y, Matheson E, Li X (2019) Ligation technologies for the synthesis of cyclic peptides. Chem Rev 119:9971–10001. https://doi.org/10.1021/acs.chemrev.8b00657

    Article  CAS  PubMed  Google Scholar 

  29. El-Faham A, Albericio F (2011) Peptide coupling reagents, more than a letter soup. Chem Rev 111:6557–6602. https://doi.org/10.1021/cr100048w

    Article  CAS  PubMed  Google Scholar 

  30. Albericio F, Bofill JM, El-Faham A, Kates SA (1998) Use of onium salt-based coupling reagents in peptide synthesis1. J Org Chem 63:9678–9683. https://doi.org/10.1021/jo980807y

    Article  CAS  Google Scholar 

  31. Robey FA (2000) Selective and facile cyclization of N-chloroacetylated peptides from the C4 domain of HIV Gp120 in LiCl/DMF solvent systems. J Pept Res 56:115–120. https://doi.org/10.1034/j.1399-3011.2000.00734.x

    Article  CAS  PubMed  Google Scholar 

  32. Ye Y, Liu M, Tang Y, Jiang X (2002) Promotion of cyclization of linear pentapeptides and heptapeptide by different univalent metal ions. Chem Commun:532–533. https://doi.org/10.1039/b108133k

  33. Biancalana M, Koide S (2010) Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim Biophys Acta, Proteins Proteomics 1804:1405–1412. https://doi.org/10.1016/j.bbapap.2010.04.001

    Article  CAS  Google Scholar 

  34. Rho JY, Brendel JC, MacFarlane LR et al (2017) Probing the dynamic nature of self-assembling cyclic peptide—polymer nanotubes in solution and in mammalian cells. Adv Funct Mater 28:1704569. https://doi.org/10.1002/adfm.201704569

    Article  CAS  Google Scholar 

  35. Insua I, Montenegro J (2020) 1D to 2D self assembly of cyclic peptides. J Am Chem Soc 142:300–307. https://doi.org/10.1021/jacs.9b10582

    Article  CAS  PubMed  Google Scholar 

  36. Magonov S (1996) Surface analysis with STM and AFM : experimental and theoretical aspects of image analysis. VCH, Weinheim

    Google Scholar 

  37. Chapman R, Koh ML, Warr GG et al (2013) Structure elucidation and control of cyclic peptide-derived nanotube assemblies in solution. Chem Sci 4:2581–2589. https://doi.org/10.1039/c3sc00064h

    Article  CAS  Google Scholar 

  38. Rho JY, Cox H, Mansfield EDH et al (2019) Dual self-assembly of supramolecular peptide nanotubes to provide stabilisation in water. Nat Commun 10:4708. https://doi.org/10.1038/s41467-019-12586-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lerner Yardeni J, Amit M, Ashkenasy G, Ashkenasy N (2016) Sequence dependent proton conduction in self-assembled peptide nanostructures. Nanoscale 8:2358–2366. https://doi.org/10.1039/c5nr06750b

    Article  CAS  PubMed  Google Scholar 

  40. Fears KP, Kolel-Veetil MK, Barlow DE et al (2018) High-performance nanomaterials formed by rigid yet extensible cyclic β-peptide polymers. Nat Commun 9:4090. https://doi.org/10.1038/s41467-018-06576-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Amblard M, Fehrentz JA, Martinez J, Subra G (2006) Methods and protocols of modern solid phase synthesis. Mol Biotechnol 33:239–254. https://doi.org/10.1385/MB:33:3:239

    Article  CAS  PubMed  Google Scholar 

  42. Mant CT et al (2007) HPLC analysis and purification of peptides. In: Fields GB (ed) Peptide characterization and application protocols. Methods in molecular biology™, vol 386. Humana Press. https://doi.org/10.1007/978-1-59745-430-8_1

    Chapter  Google Scholar 

  43. Díaz S, Insua I, Bhak G, Montenegro J (2020) Sequence decoding of 1D to 2D self-assembling cyclic peptides. Chem Eur J 26(64):14765–14770. https://doi.org/10.1002/chem.202003265

    Article  CAS  PubMed  Google Scholar 

  44. Méndez-Ardoy A, Granja JR, Montenegro J (2018) pH-Triggered self-assembly and hydrogelation of cyclic peptide nanotubes confined in water micro-droplets. Nanoscale Horiz 3:391–396. https://doi.org/10.1039/c8nh00009c

    Article  CAS  PubMed  Google Scholar 

  45. Méndez-Ardoy A, Bayón-Fernández A, Yu Z et al (2020) Spatially controlled supramolecular polymerization of peptide nanotubes by microfluidics. Angew Chem Int Ed 59:6902–6908. https://doi.org/10.1002/anie.202000103

    Article  CAS  Google Scholar 

  46. Jacobsen NE (2007) NMR spectroscopy explained. Wiley, Hoboken, NJ

    Book  Google Scholar 

  47. Fuertes A, Amorín M, Granja JR (2020) Versatile symport transporters based on cyclic peptide dimers. Chem Commun 56:46–49. https://doi.org/10.1039/C9CC06644F

    Article  CAS  Google Scholar 

  48. Fuertes A, Ozores HL, Amorín M, Granja JR (2017) Self-assembling venturi-like peptide nanotubes. Nanoscale 9:748–753. https://doi.org/10.1039/C6NR08174F

    Article  CAS  PubMed  Google Scholar 

  49. Ozores HL, Amorín M, Granja JR (2017) Self-assembling molecular capsules based on α,γ-cyclic peptides. J Am Chem Soc 139:776–784. https://doi.org/10.1021/jacs.6b10456

    Article  CAS  PubMed  Google Scholar 

  50. Rodríguez-Vázquez N, Amorín M, Granja J (2017) Recent advances in controlling the internal and external properties of self-assembling cyclic peptide nanotubes and dimers. Org Biomol Chem 15:4490–4505. https://doi.org/10.1039/c7ob00351j

    Article  CAS  PubMed  Google Scholar 

  51. Greenfield NJ (2006) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1:2876–2890. https://doi.org/10.1038/nprot.2006.202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Spanish Agencia Estatal de Investigación (AEI) [SAF2017-89890-R and PID2019-111126RB-100], the Xunta de Galicia (ED431C 2017/25, Centro Singular de Investigación de Galicia accreditation 2019-2022, ED431G 2019/03), and the European Union (European Regional Development Fund–ERDF). I.I. received a Juan de la Cierva fellowship (FJCI-2017-31795). J.M. thanks the ISCIII (COV20/00297), the AEI (Programación Conjunta Internacional, PCI2019-103400), the ERC-Stg (DYNAP-677786), the ERC-PoC (TraffikGene-838002) and the YIG from the HFSP (RGY0066/2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Montenegro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Méndez-Ardoy, A., Insua, I., Granja, J.R., Montenegro, J. (2022). Cyclization and Self-Assembly of Cyclic Peptides. In: Coppock, M.B., Winton, A.J. (eds) Peptide Macrocycles. Methods in Molecular Biology, vol 2371. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1689-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1689-5_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1688-8

  • Online ISBN: 978-1-0716-1689-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics