Skip to main content

Preparation of Bacterial Cell-Surface Displayed Semisynthetic Cyclic Peptides

Part of the Methods in Molecular Biology book series (MIMB,volume 2371)

Abstract

Semisynthetic cyclic peptides bearing both non-proteinogenic and genetically encoded amino acids are excellent ligands for peptide-based drug discovery. While semisynthesis expands the chemical space, genetic encoding allows access to a large library via randomization at the nucleic acid level. Selection of novel binders of such macrocyclic ligands requires linking their genotype to phenotype. In this chapter, we report a bacterial cell-surface display system to present cyclic peptides composed of synthetic and genetically encoded fragments. The synthetic fragment along with the split intein partner and an aminooxy moiety is ligated and cyclized with the recombinant backbone containing an unnatural amino acid by protein trans-splicing and intramolecular oxime ligation, respectively. A pH-shift protocol was applied to accelerate on surface cyclization. This method will enable generation of semisynthetic cyclic peptide libraries and their selection by fluorescence-activated cell sorting.

Key words

  • Bacterial display
  • Macrocycles
  • Inteins
  • Oxime ligation
  • Semisynthesis
  • Protein trans-splicing

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-1689-5_11
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-1689-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Driggers EM, Hale SP, Lee J, Terrett NK (2008) The exploration of macrocycles for drug discovery--an underexploited structural class. Nat Rev Drug Discov 7(7):608–624. https://doi.org/10.1038/nrd2590

    CAS  CrossRef  PubMed  Google Scholar 

  2. Vinogradov AA, Yin Y, Suga H (2019) Macrocyclic peptides as drug candidates: recent Progress and remaining challenges. J Am Chem Soc 141(10):4167–4181. https://doi.org/10.1021/jacs.8b13178

    CAS  CrossRef  PubMed  Google Scholar 

  3. Shinbara K, Liu W, van Neer RHP, Katoh T, Suga H (2020) Methodologies for backbone macrocyclic peptide synthesis compatible with screening technologies. Front Chem 8:447

    CAS  CrossRef  Google Scholar 

  4. Sohrabi C, Foster A, Tavassoli A (2020) Methods for generating and screening libraries of genetically encoded cyclic peptides in drug discovery. Nat Rev Chem 4(2):90–101. https://doi.org/10.1038/s41570-019-0159-2

    CAS  CrossRef  Google Scholar 

  5. Qian Z, Upadhyaya P, Pei D (2015) Synthesis and screening of one-bead-one-compound cyclic peptide libraries. Methods Mol Biol 1248:39–53. https://doi.org/10.1007/978-1-4939-2020-4_3

    CAS  CrossRef  PubMed  Google Scholar 

  6. Castillo F, Tavassoli A (2019) Genetic selections with SICLOPPS libraries: toward the identification of novel protein-protein interaction inhibitors and chemical tools. Methods Mol Biol 2001:317–328. https://doi.org/10.1007/978-1-4939-9504-2_15

    CAS  CrossRef  PubMed  Google Scholar 

  7. Smith GP, Petrenko VA (1997) Phage display. Chem Rev 97(2):391–410. https://doi.org/10.1021/cr960065d

    CAS  CrossRef  PubMed  Google Scholar 

  8. Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15(6):553–557. https://doi.org/10.1038/nbt0697-553

    CAS  CrossRef  PubMed  Google Scholar 

  9. Kawakami T, Ohta A, Ohuchi M, Ashigai H, Murakami H, Suga H (2009) Diverse backbone-cyclized peptides via codon reprogramming. Nat Chem Biol 5(12):888–890. https://doi.org/10.1038/nchembio.259

    CAS  CrossRef  PubMed  Google Scholar 

  10. Tsiamantas C, Otero-Ramirez ME, Suga H (2019) Discovery of functional macrocyclic peptides by means of the RaPID system. Methods Mol Biol 2001:299–315. https://doi.org/10.1007/978-1-4939-9504-2_14

    CAS  CrossRef  PubMed  Google Scholar 

  11. Schlippe YV, Hartman MC, Josephson K, Szostak JW (2012) In vitro selection of highly modified cyclic peptides that act as tight binding inhibitors. J Am Chem Soc 134(25):10469–10477. https://doi.org/10.1021/ja301017y

    CAS  CrossRef  PubMed  Google Scholar 

  12. Smith JM, Vitali F, Archer SA, Fasan R (2011) Modular assembly of macrocyclic organo-peptide hybrids using synthetic and genetically encoded precursors. Angew Chem Int Ed Engl 50(22):5075–5080. https://doi.org/10.1002/anie.201101331

    CAS  CrossRef  PubMed  Google Scholar 

  13. Owens AE, de Paola I, Hansen WA, Liu YW, Khare SD, Fasan R (2017) Design and evolution of a macrocyclic peptide inhibitor of the sonic hedgehog/patched interaction. J Am Chem Soc 139(36):12559–12568. https://doi.org/10.1021/jacs.7b06087

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  14. Owens AE, Iannuzzelli JA, Gu Y, Fasan R (2020) MOrPH-PhD: an integrated phage display platform for the discovery of functional genetically encoded peptide macrocycles. ACS Cent Sci 6(3):368–381. https://doi.org/10.1021/acscentsci.9b00927

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  15. Wang XS, Chen PC, Hampton JT, Tharp JM, Reed CA, Das SK, Wang DS, Hayatshahi HS, Shen Y, Liu J, Liu WR (2019) A genetically encoded, phage-displayed cyclic-peptide library. Angew Chem Int Ed Engl 58(44):15904–15909. https://doi.org/10.1002/anie.201908713

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  16. Timmerman P, Beld J, Puijk WC, Meloen RH (2005) Rapid and quantitative cyclization of multiple peptide loops onto synthetic scaffolds for structural mimicry of protein surfaces. Chembiochem 6(5):821–824. https://doi.org/10.1002/cbic.200400374

    CAS  CrossRef  PubMed  Google Scholar 

  17. Heinis C, Rutherford T, Freund S, Winter G (2009) Phage-encoded combinatorial chemical libraries based on bicyclic peptides. Nat Chem Biol 5(7):502–507. https://doi.org/10.1038/nchembio.184

    CAS  CrossRef  PubMed  Google Scholar 

  18. Kale SS, Villequey C, Kong XD, Zorzi A, Deyle K, Heinis C (2018) Cyclization of peptides with two chemical bridges affords large scaffold diversities. Nat Chem 10(7):715–723. https://doi.org/10.1038/s41557-018-0042-7

    CAS  CrossRef  PubMed  Google Scholar 

  19. Ng S, Jafari MR, Derda R (2012) Bacteriophages and viruses as a support for organic synthesis and combinatorial chemistry. ACS Chem Biol 7(1):123–138. https://doi.org/10.1021/cb200342h

    CAS  CrossRef  PubMed  Google Scholar 

  20. Woiwode TF, Haggerty JE, Katz R, Gallop MA, Barrett RW, Dower WJ, Cwirla SE (2003) Synthetic compound libraries displayed on the surface of encoded bacteriophage. Chem Biol 10(9):847–858. https://doi.org/10.1016/j.chembiol.2003.08.005

    CAS  CrossRef  PubMed  Google Scholar 

  21. Chen S, Bogyo M (2019) A phage display approach to identify highly selective covalent binders. bioRxiv:791533. https://doi.org/10.1101/791533

  22. Palei S, Mootz HD (2015) Cyclic peptides made by linking synthetic and genetically encoded fragments. Chembiochem. https://doi.org/10.1002/cbic.201500673

  23. Volkmann G, Mootz HD (2013) Recent progress in intein research: from mechanism to directed evolution and applications. Cell Mol Life Sci 70(7):1185–1206. https://doi.org/10.1007/s00018-012-1120-4

    CAS  CrossRef  PubMed  Google Scholar 

  24. Shah NH, Muir TW (2014) Inteins: nature's gift to protein chemists. Chem Sci 5:446–461

    CAS  CrossRef  Google Scholar 

  25. Appleby-Tagoe JH, Thiel IV, Wang Y, Wang Y, Mootz HD, Liu XQ (2011) Highly efficient and more general cis- and trans-splicing inteins through sequential directed evolution. J Biol Chem 286(39):34440–34447

    CAS  CrossRef  Google Scholar 

  26. Wasmuth A, Ludwig C, Mootz HD (2013) Structure-activity studies on the upstream splice junction of a semisynthetic intein. Bioorg Med Chem 21(12):3495–3503. https://doi.org/10.1016/j.bmc.2013.03.065

    CAS  CrossRef  PubMed  Google Scholar 

  27. Friedel K, Popp MA, Matern JCJ, Gazdag EM, Thiel IV, Volkmann G, Blankenfeldt W, Mootz HD (2019) A functional interplay between intein and extein sequences in protein splicing compensates for the essential block B histidine. Chem Sci 10(1):239–251. https://doi.org/10.1039/c8sc01074a

    CAS  CrossRef  PubMed  Google Scholar 

  28. Palei S, Becher KS, Nienberg C, Jose J, Mootz HD (2019) Bacterial cell-surface display of semisynthetic cyclic peptides. Chembiochem 20(1):72–77. https://doi.org/10.1002/cbic.201800552

    CAS  CrossRef  PubMed  Google Scholar 

  29. Jose J, Maas RM, Teese MG (2012) Autodisplay of enzymes--molecular basis and perspectives. J Biotechnol 161(2):92–103. https://doi.org/10.1016/j.jbiotec.2012.04.001

    CAS  CrossRef  PubMed  Google Scholar 

  30. Jose J, Meyer TF (2007) The autodisplay story, from discovery to biotechnical and biomedical applications. Microbiol Mol Biol Rev 71(4):600–619. https://doi.org/10.1128/mmbr.00011-07

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  31. Obeng EM, Brossette T, Ongkudon CM, Budiman C, Maas R, Jose J (2018) The workability of Escherichia coli BL21 (DE3) and pseudomonas putida KT2440 expression platforms with autodisplayed cellulases: a comparison. Appl Microbiol Biotechnol 102(11):4829–4841. https://doi.org/10.1007/s00253-018-8987-4

    CAS  CrossRef  PubMed  Google Scholar 

  32. Wang L, Zhang Z, Brock A, Schultz PG (2003) Addition of the keto functional group to the genetic code of Escherichia coli. Proc Natl Acad Sci U S A 100(1):56–61

    CAS  CrossRef  Google Scholar 

  33. Lee PY, Costumbrado J, Hsu CY, Kim YH (2012) Agarose gel electrophoresis for the separation of DNA fragments. J Vis Exp 62. https://doi.org/10.3791/3923

  34. Palei S, Mootz HD (2017) Preparation of semisynthetic peptides macrocycles using Split Inteins. Methods Mol Biol 1495:77–92. https://doi.org/10.1007/978-1-4939-6451-2_6

    CAS  CrossRef  PubMed  Google Scholar 

  35. Jose J, Krämer J, Klauser T, Pohlner J, Meyer TF (1996) Absence of periplasmic DsbA oxidoreductase facilitates export of cysteine-containing passenger proteins to the Escherichia coli cell surface via the Iga beta autotransporter pathway. Gene 178(1-2):107–110. https://doi.org/10.1016/0378-1119(96)00343-5

    CAS  CrossRef  PubMed  Google Scholar 

  36. Jose J, Bernhardt R, Hannemann F (2001) Functional display of active bovine adrenodoxin on the surface of E. coli by chemical incorporation of the [2Fe-2S] cluster. Chembiochem 2(9):695–701. https://doi.org/10.1002/1439-7633(20010903)2:9<695::aid-cbic695>3.0.co;2-s

    CAS  CrossRef  PubMed  Google Scholar 

  37. Mootz HD (2009) Split inteins as versatile tools for protein semisynthesis. Chembiochem 10(16):2579–2589

    CAS  CrossRef  Google Scholar 

  38. Fleetwood F, Andersson KG, Ståhl S, Löfblom J (2014) An engineered autotransporter-based surface expression vector enables efficient display of Affibody molecules on OmpT-negative E. coli as well as protease-mediated secretion in OmpT-positive strains. Microb Cell Fact 13:179. https://doi.org/10.1186/s12934-014-0179-z

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  39. Binschik J, Zettler J, Mootz HD (2011) Photocontrol of protein activity mediated by the cleavage reaction of a split intein. Angew Chem Int Ed Engl 50(14):3249–3252

    CAS  CrossRef  Google Scholar 

  40. Thiel IV, Volkmann G, Pietrokovski S, Mootz HD (2014) An atypical naturally split intein engineered for highly efficient protein labeling. Angew Chem Int Ed Engl 53(5):1306–1310. https://doi.org/10.1002/anie.201307969

    CAS  CrossRef  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge support from Dr. Wolfgang Dörner and Stephanie Wulff for mass spectrometry. We thank Peter G. Schultz (Scripps Research Institute, La Jolla) for providing the plasmid for AcF incorporation. We acknowledge financial support from the DFG (SPP1623, grant MO1073/5-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning D. Mootz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Palei, S., Jose, J., Mootz, H.D. (2022). Preparation of Bacterial Cell-Surface Displayed Semisynthetic Cyclic Peptides. In: Coppock, M.B., Winton, A.J. (eds) Peptide Macrocycles. Methods in Molecular Biology, vol 2371. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1689-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1689-5_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1688-8

  • Online ISBN: 978-1-0716-1689-5

  • eBook Packages: Springer Protocols