Skip to main content

Integration of Genomic and Transcriptomic Data to Elucidate Molecular Processes in Babesia divergens

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2369))

Abstract

Emerging pathogens have developed ingenious life cycles to facilitate their growth and survival in the host organism. Detailed knowledge of the life cycle of these pathogens is increasingly necessary if we are to design new strategies to prevent infection and transmission. Multi-omics platforms provide useful data at different biological levels, and integration of these data into current approaches can facilitate holistic assessment of emerging pathogens. In this chapter, we bring together various methods and apply an integrative approach for analysis of genomic and transcriptomic data in Babesia divergens, an Apicomplexa emerging parasite that invades red blood cells and causes redwater fever in cattle and the most severe form of babesiosis in humans in Europe. The integrative methodology described herein can be helpful to identify genes active at specific points during life cycle of Apicomplexa parasites.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Cursino-Santos JR, Singh M, Pham P et al (2016) Babesia divergens builds a complex population structure composed of specific ratios of infected cells to ensure a prompt response to changing environmental conditions. Cell Microbiol 18:859–874. https://doi.org/10.1111/cmi.12555

    Article  CAS  PubMed  Google Scholar 

  2. Conesa JJ, Sevilla E, Terrón MC et al (2020) Four-dimensional characterization of the Babesia divergens asexual life cycle, from the trophozoite to the multiparasite stage. mSphere 5(5):e00928–e00920. https://doi.org/10.1128/mSphere.00928-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sevilla E, González LM, Luque D et al (2018) Kinetics of the invasion and egress processes of Babesia divergens, observed by time-lapse video microscopy. Sci Rep 8:14116. https://doi.org/10.1038/s41598-018-32349-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hildebrandt A, Gray JS, Hunfeld K-P (2013) Human babesiosis in Europe: what clinicians need to know. Infection 41:1057–1072. https://doi.org/10.1007/s15010-013-0526-8

    Article  CAS  PubMed  Google Scholar 

  5. Zintl A, McGrath G, O’Grady L et al (2014) Changing incidence of bovine babesiosis in Ireland. Ir Vet J 67(1):19. https://doi.org/10.1186/2046-0481-67-19

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cuesta I, González LM, Estrada K et al (2014) High-quality draft genome sequence of Babesia divergens, the etiological agent of cattle and human babesiosis. Genome Announc 2(6):e01194–e01114. https://doi.org/10.1128/genomeA.01194-14

    Article  PubMed  PubMed Central  Google Scholar 

  7. González LM, Estrada K, Grande R et al (2019) Comparative and functional genomics of the protozoan parasite Babesia divergens highlighting the invasion and egress processes. PLoS Negl Trop Dis 13(8):e0007680. https://doi.org/10.1371/journal.pntd.0007680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Andrews S (2010) FastQC a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

  9. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437(7057):376–380. https://doi.org/10.1038/nature03959

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gnerre S, Maccallum I, Przybylski D et al (2011) High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci U S A 108(4):1513–1518. https://doi.org/10.1073/pnas.1017351108

    Article  CAS  PubMed  Google Scholar 

  12. Soto-Jimenez LM, Estrada K, Sanchez-Flores A (2014) GARM: genome assembly, reconciliation and merging pipeline. Curr Top Med Chem 14(3):418–424. https://doi.org/10.2174/1568026613666131204110628

    Article  CAS  PubMed  Google Scholar 

  13. Boetzer M, Henkel CV, Jansen HJ et al (2011) Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27(4):578–579. https://doi.org/10.1093/bioinformatics/btq683

    Article  CAS  PubMed  Google Scholar 

  14. Tsai IJ, Otto TD, Berriman M (2010) Improving draft assemblies by iterative mapping and assembly of short reads to eliminate gaps. Genome Biol 11(4):R41. https://doi.org/10.1186/gb-2010-11-4-r41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lin H-H, Liao Y-C (2015) Evaluation and validation of assembling corrected PacBio long reads for microbial genome completion via hybrid approaches. PLoS One 10(12):e0144305. https://doi.org/10.1371/journal.pone.0144305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Otto TD, Sanders M, Berriman M et al (2010) Iterative correction of reference nucleotides (iCORN) using second generation sequencing technology. Bioinformatics 26(14):1704–1707. https://doi.org/10.1093/bioinformatics/btq269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jiménez-Jacinto V, Sanchez-Flores A, Vega-Alvarado L (2019) Integrative differential expression analysis for multiple EXperiments (IDEAMEX): a web server tool for integrated RNA-Seq data analysis. Front Genet 10:279. https://doi.org/10.3389/fgene.2019.00279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40(15):e115. https://doi.org/10.1093/nar/gks596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to “Unidad de Secuenciación Masiva y Bioinformática” of the “Laboratorio Nacional de Apoyo Tecnológico a las Ciencias Genómicas,” CONACyT #260481, at the Instituto de Biotecnología/UNAM for sequencing and bioinformatics support. We thank Centro de Transfusiones de la Comunidad de Madrid that provided the human A+ blood from healthy volunteer donors. This work was supported by grants from Ministerio de Economia y Competitividad and the Health Institute Carlos III from Spain (AGL2014-56193 and PI20CIII/00037 to EM and LMG). ES was awarded a research fellowship from Plan Estatal de Investigación Científica y Técnica y de Innovación, Ministerio de Economía y Competitividad, Spain. Alejandro Sánchez-Flores and Estrella Montero have contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alejandro Sanchez-Flores or Estrella Montero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gonzalez, L.M., Sevilla, E., Fernández-García, M., Sanchez-Flores, A., Montero, E. (2021). Integration of Genomic and Transcriptomic Data to Elucidate Molecular Processes in Babesia divergens. In: de Pablos, L.M., Sotillo, J. (eds) Parasite Genomics. Methods in Molecular Biology, vol 2369. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1681-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1681-9_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1680-2

  • Online ISBN: 978-1-0716-1681-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics