Skip to main content

Analysis of the Interaction Between Plasmodium falciparum-Infected Erythrocytes and Human Endothelial Cells Using a Laminar Flow System, Bioinformatic Tracking and Transcriptome Analysis

Part of the Methods in Molecular Biology book series (MIMB,volume 2369)

Abstract

During malaria infection, the endothelial lining of the small blood vessels of the brain and other vital organs is strongly stimulated. This leads to fatal complications and poor prognosis of the infection. It is believed that two main reasons are responsible for this pathology, namely the cytoadhesion of Plasmodium falciparum-infected erythrocytes (IEs) on the one hand and the proinflammatory products released by the IEs which activate the endothelial cells (ECs) on the other hand. Until recently, most of the studies that characterized the activation of ECs were performed under static conditions, which do not reflect the real sequelae in vivo. In this chapter, we present a system, which allows authentic simulation of the IEs–ECs interactions during P. falciparum infection.

The main idea of the system is to provide an adequate shear stress over the ECs during the cytoadhesion and stimulation with IEs, which provides a better basis for the investigation of the cytoadhesion pathology through analyzing the ECs’ transcriptome after stimulation. On the other hand, analyzing the transcriptome of the IEs might also give deeper analysis of their response to shear stress. Deep understanding of these events might help in the development of novel treatment strategies that interfere with this cell–cell interaction.

Key words

  • Endothelial cells
  • Shear stress
  • Cytoadhesion
  • P. falciparum
  • Cerebral malaria

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Margaret A, Phillips JNB, Manyando C, van Huijsduijnen RH, Van Voorhis WC, Wells TNC (2017) Malaria. Nat Rev Dis Primers 3:17050

    CrossRef  Google Scholar 

  2. Cunnington AJ, Walther M, Riley EM (2013) Piecing together the puzzle of severe malaria. Sci Transl Med 5(211):211ps18

    CrossRef  PubMed  Google Scholar 

  3. Taylor TE, Fu WJ, Carr RA, Whitten RO, Mueller JS, Fosiko NG, Lewallen S, Liomba NG, Molyneux ME (2004) Differentiating the pathologies of cerebral malaria by postmortem parasite counts. Nat Med 10(2):143–145. https://doi.org/10.1038/nm986

    CrossRef  CAS  PubMed  Google Scholar 

  4. Craig AG, Khairul MF, Patil PR (2012) Cytoadherence and severe malaria. Malays J Med Sci 19(2):5–18

    PubMed  Google Scholar 

  5. Rowe JA, Claessens A, Corrigan RA, Arman M (2009) Adhesion of Plasmodium falciparum-infected erythrocytes to human cells: molecular mechanisms and therapeutic implications. Expert Rev Mol Med 11:e16. https://doi.org/10.1017/S1462399409001082

    CrossRef  PubMed  PubMed Central  Google Scholar 

  6. Turner L, Lavstsen T, Berger SS, Wang CW, Petersen JE, Avril M, Brazier AJ, Freeth J, Jespersen JS, Nielsen MA, Magistrado P, Lusingu J, Smith JD, Higgins MK, Theander TG (2013) Severe malaria is associated with parasite binding to endothelial protein C receptor. Nature 498(7455):502–505. https://doi.org/10.1038/nature12216

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kyes S, Horrocks P, Newbold C (2001) Antigenic variation at the infected red cell surface in malaria. Annu Rev Microbiol 55:673–707. https://doi.org/10.1146/annurev.micro.55.1.673

    CrossRef  CAS  PubMed  Google Scholar 

  8. Drexler H, Hornig B (1999) Endothelial dysfunction in human disease. J Mol Cell Cardiol 31(1):51–60. https://doi.org/10.1006/jmcc.1998.0843

    CrossRef  CAS  PubMed  Google Scholar 

  9. Pate M, Damarla V, Chi DS, Negi S, Krishnaswamy G (2010) Endothelial cell biology: role in the inflammatory response. Adv Clin Chem 52:109–130

    CrossRef  CAS  PubMed  Google Scholar 

  10. Cunnington AJ, Riley EM, Walther M (2013) Stuck in a rut? Reconsidering the role of parasite sequestration in severe malaria syndromes. Trends Parasitol 29(12):585–592. https://doi.org/10.1016/j.pt.2013.10.004

    CrossRef  PubMed  Google Scholar 

  11. Kim H, Higgins S, Liles WC, Kain KC (2011) Endothelial activation and dysregulation in malaria: a potential target for novel therapeutics. Curr Opin Hematol 18(3):177–185. https://doi.org/10.1097/MOH.0b013e328345a4cf

    CrossRef  CAS  PubMed  Google Scholar 

  12. Grau GE, Craig AG (2012) Cerebral malaria pathogenesis: revisiting parasite and host contributions. Future Microbiol 7(2):291–302. https://doi.org/10.2217/fmb.11.155

    CrossRef  PubMed  Google Scholar 

  13. Rajendran P, Rengarajan T, Thangavel J et al (2013) The vascular endothelium and human diseases. Int J Biol Sci 9(10):1057–1069. Published 2013 Nov 9. https://doi.org/10.7150/ijbs.7502

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu F, Liu L, Zhou H (2017) Endothelial cell activation in central nervous system inflammation. J Leukoc Biol 101(5):1119–1132. https://doi.org/10.1189/jlb.3RU0816-352RR

    CrossRef  CAS  PubMed  Google Scholar 

  15. Drexler H (1997) Endothelial dysfunction: clinical implications. Prog Cardiovasc Dis 39(4):287–324

    CrossRef  CAS  PubMed  Google Scholar 

  16. Rashad S, Han X, Saqr K, Tupin S, Ohta M, Niizuma K, Tominaga T (2020) Epigenetic response of endothelial cells to different wall shear stress magnitudes: a report of new mechano-miRNAs. J Cell Physiol 235(11):7827–7839. https://doi.org/10.1002/jcp.29436

    CrossRef  CAS  PubMed  Google Scholar 

  17. Trager W, Jensen JB (1976) Human malaria parasites in continuous culture. Science 193(4254):673–675. https://doi.org/10.1126/science.781840

    CrossRef  CAS  PubMed  Google Scholar 

  18. Lubiana P, Bouws P, Roth LK, Dorpinghaus M, Rehn T, Brehmer J, Wichers JS, Bachmann A, Hohn K, Roeder T, Thye T, Gutsmann T, Burmester T, Bruchhaus I, Metwally NG (2020) Adhesion between P. falciparum infected erythrocytes and human endothelial receptors follows alternative binding dynamics under flow and febrile conditions. Sci Rep 10(1):4548. https://doi.org/10.1038/s41598-020-61388-2

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  19. Waterkeyn JG, Cowman AF, Cooke BM (2001) Plasmodium falciparum: gelatin enrichment selects for parasites with full-length chromosome 2. Implications for cytoadhesion assays. Exp Parasitol 97(2):115–118. https://doi.org/10.1006/expr.2000.4593

    CrossRef  CAS  PubMed  Google Scholar 

  20. Fu Y, Wu PH, Beane T, Zamore PD, Weng Z (2018) Elimination of PCR duplicates in RNAseq and small RNA-seq using unique molecular identifiers. BMC Genomics 19:531

    CrossRef  PubMed  PubMed Central  Google Scholar 

  21. Raabe CA, Tang TH, Brosius J, Rozhdestvensky TS (2014) Biases in small RNA deep sequencing data. Nucleic Acids Res 42(3):1414–1426. https://doi.org/10.1093/nar/gkt1021

    CrossRef  CAS  PubMed  Google Scholar 

  22. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  23. R: a language and environment for statistical computing, R Core Team, R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org

  24. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550. https://doi.org/10.1186/s13059-014-0550-8

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bruijning M, Visser MD, Hallmann CA, Jongejans E (2018) Trackdem: automated particle tracking to obtain population counts and size distributions from videos in R. Methods Ecol Evol 9(4):965–973

    CrossRef  Google Scholar 

  26. Metwally NG, Tilly AK, Lubiana P, Roth LK, Dorpinghaus M, Lorenzen S, Schuldt K, Witt S, Bachmann A, Tidow H, Gutsmann T, Burmester T, Roeder T, Tannich E, Bruchhaus I (2017) Characterisation of Plasmodium falciparum populations selected on the human endothelial receptors P-selectin, E-selectin, CD9 and CD151. Sci Rep 7(1):4069. https://doi.org/10.1038/s41598-017-04241-3

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Iris Bruchhaus or Nahla Galal Metwally .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wu, Y., Bouws, P., Lorenzen, S., Bruchhaus, I., Metwally, N.G. (2021). Analysis of the Interaction Between Plasmodium falciparum-Infected Erythrocytes and Human Endothelial Cells Using a Laminar Flow System, Bioinformatic Tracking and Transcriptome Analysis. In: de Pablos, L.M., Sotillo, J. (eds) Parasite Genomics. Methods in Molecular Biology, vol 2369. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1681-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1681-9_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1680-2

  • Online ISBN: 978-1-0716-1681-9

  • eBook Packages: Springer Protocols