Skip to main content

Transcriptional Analysis of Tightly Synchronized Plasmodium falciparum Intraerythrocytic Stages by RT-qPCR

Part of the Methods in Molecular Biology book series (MIMB,volume 2369)


In Plasmodium falciparum, the parasite responsible for the most severe forms of human malaria, many fundamental processes are controlled at the transcriptional level. Studies on diverse aspects of basic parasite biology as well as molecular epidemiology studies often rely on the ability to accurately measure transcript levels, but this is complicated by the cyclic expression patterns of the majority of malaria parasite genes. Here, we provide a complete workflow to measure transcript levels in P. falciparum intraerythrocytic blood stages, overcoming the confounding factors that are commonly encountered. The method described covers all the steps from synchronization of parasite cultures to reverse transcriptase quantitative PCR (RT-qPCR) analysis.

Key words

  • Plasmodium falciparum
  • Malaria
  • Reverse transcriptase quantitative PCR (RT-qPCR)
  • Tight synchronization
  • RNA extraction
  • Transcriptional analysis
  • Gene expression

This is a preview of subscription content, access via your institution.

Buying options

USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-1681-9_10
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-1681-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more


  1. Llora-Batlle O, Tinto-Font E, Cortes A (2019) Transcriptional variation in malaria parasites: why and how. Brief Funct Genomics 18(5):329–341

    CrossRef  Google Scholar 

  2. Bozdech Z, Llinas M, Pulliam BL, Wong ED, Zhu J, DeRisi JL (2003) The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol 1(1):E5

    CrossRef  Google Scholar 

  3. Le Roch KG, Zhou Y, Blair PL, Grainger M, Moch JK, Haynes JD, De La Vega P, Holder AA, Batalov S, Carucci DJ, Winzeler EA (2003) Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301(5639):1503–1508

    CrossRef  Google Scholar 

  4. Rovira-Graells N, Gupta AP, Planet E, Crowley VM, Mok S, Ribas de Pouplana L, Preiser PR, Bozdech Z, Cortés A (2012) Transcriptional variation in the malaria parasite Plasmodium falciparum. Genome Res 22(5):925–938

    CAS  CrossRef  Google Scholar 

  5. Jeninga MD, Quinn JE, Petter M (2019) ApiAP2 transcription factors in apicomplexan parasites. Pathogens 8(2):E47

    CrossRef  Google Scholar 

  6. Painter HJ, Altenhofen LM, Kafsack BF, Llinas M (2013) Whole-genome analysis of Plasmodium spp. utilizing a new agilent technologies DNA microarray platform. Methods Mol Biol 923:213–219

    CAS  CrossRef  Google Scholar 

  7. Broadbent KM, Broadbent JC, Ribacke U, Wirth D, Rinn JL, Sabeti PC (2015) Strand-specific RNA sequencing in Plasmodium falciparum malaria identifies developmentally regulated long non-coding RNA and circular RNA. BMC Genomics 16:454

    CrossRef  Google Scholar 

  8. Lu XM, Le Roch K (2021) Strand-specific RNA-Seq applied to malaria samples. Methods Mol Biol 2170:19–33

    CAS  CrossRef  Google Scholar 

  9. Hoeijmakers WA, Bártfai R, Stunnenberg HG (2013) Transcriptome analysis using RNA-Seq. Methods Mol Biol 923:221–239

    CAS  CrossRef  Google Scholar 

  10. Bartfai R, Hoeijmakers WA, Salcedo-Amaya AM, Smits AH, Janssen-Megens E, Kaan A, Treeck M, Gilberger TW, Francoijs KJ, Stunnenberg HG (2010) H2A.Z demarcates intergenic regions of the Plasmodium falciparum epigenome that are dynamically marked by H3K9ac and H3K4me3. PLoS Pathog 6(12):e1001223

    CAS  CrossRef  Google Scholar 

  11. Toenhake CG, Fraschka SA, Vijayabaskar MS, Westhead DR, van Heeringen SJ, Bartfai R (2018) Chromatin accessibility-based characterization of the gene regulatory network underlying Plasmodium falciparum blood-stage development. Cell Host Microbe 23(4):557–569.e559

    CAS  CrossRef  Google Scholar 

  12. Llinas M, Bozdech Z, Wong ED, Adai AT, DeRisi JL (2006) Comparative whole genome transcriptome analysis of three Plasmodium falciparum strains. Nucleic Acids Res 34(4):1166–1173

    CAS  CrossRef  Google Scholar 

  13. Mira-Martínez S, van Schuppen E, Amambua-Ngwa A, Bottieau E, Affara M, Van Esbroeck M, Vlieghe E, Guetens P, Rovira-Graells N, Gómez-Perez GP, Alonso PL, D’Alessandro U, Rosanas-Urgell A, Cortés A (2017) Expression of the Plasmodium falciparum clonally variant clag3 genes in human infections. J Infect Dis 215(6):938–945

    CrossRef  Google Scholar 

  14. Bancells C, Llora-Batlle O, Poran A, Notzel C, Rovira-Graells N, Elemento O, Kafsack BFC, Cortes A (2019) Revisiting the initial steps of sexual development in the malaria parasite Plasmodium falciparum. Nat Microbiol 4(1):144–154

    CAS  CrossRef  Google Scholar 

  15. Crowley VM, Rovira-Graells N, de Pouplana LR, Cortés A (2011) Heterochromatin formation in bistable chromatin domains controls the epigenetic repression of clonally variant Plasmodium falciparum genes linked to erythrocyte invasion. Mol Microbiol 80(2):391–406

    CAS  CrossRef  Google Scholar 

  16. Rovira-Graells N, Crowley VM, Bancells C, Mira-Martínez S, Ribas de Pouplana L, Cortés A (2015) Deciphering the principles that govern mutually exclusive expression of Plasmodium falciparum clag3 genes. Nucleic Acids Res 43(17):8243–8257

    CAS  CrossRef  Google Scholar 

  17. Usui M, Prajapati SK, Ayanful-Torgby R, Acquah FK, Cudjoe E, Kakaney C, Amponsah JA, Obboh EK, Reddy DK, Barbeau MC, Simons LM, Czesny B, Raiciulescu S, Olsen C, Abuaku BK, Amoah LE, Williamson KC (2019) Plasmodium falciparum sexual differentiation in malaria patients is associated with host factors and GDV1-dependent genes. Nat Commun 10(1):2140

    CrossRef  Google Scholar 

  18. Rovira-Graells N, Aguilera-Simon S, Tinto-Font E, Cortes A (2016) New assays to characterise growth-related phenotypes of Plasmodium falciparum reveal variation in density-dependent growth inhibition between parasite lines. PLoS One 11(10):e0165358

    CrossRef  Google Scholar 

  19. Baker DA, Stewart LB, Large JM, Bowyer PW, Ansell KH, Jimenez-Diaz MB, El Bakkouri M, Birchall K, Dechering KJ, Bouloc NS, Coombs PJ, Whalley D, Harding DJ, Smiljanic-Hurley E, Wheldon MC, Walker EM, Dessens JT, Lafuente MJ, Sanz LM, Gamo FJ, Ferrer SB, Hui R, Bousema T, Angulo-Barturen I, Merritt AT, Croft SL, Gutteridge WE, Kettleborough CA, Osborne SA (2017) A potent series targeting the malarial cGMP-dependent protein kinase clears infection and blocks transmission. Nat Commun 8(1):430

    CrossRef  Google Scholar 

Download references


The team is funded by grants from the Spanish Ministry of Science and Innovation (MICINN)/ Agencia Estatal de Investigación (AEI) [SAF2016-76190-R and PID2019-107232RB-I00 to A.C.], co-funded by the European Regional Development Fund (ERDF, European Union), and from “la Caixa” Banking Foundation under the project code HR18-00267 (awarded to A.C.). H.P.P. is funded by the TransGlobalHealth–Erasmus Mundus Joint Doctorate Programme, European Union (scholarship number 2016-1346). A.K.P. is supported by a fellowship from the Secretary for Universities and Research, Catalan Government (FI_B 00373), co-funded by the European Social Fund (ESF), European Commission. Our research is part of ISGlobal’s Program on the Molecular Mechanisms of Malaria, which is partially supported by the Fundación Ramón Areces. We acknowledge support from the Spanish Ministry of Science and Innovation through the “Centro de Excelencia Severo Ochoa 2019-2023” Program (CEX2018-000806-S), and support from the Generalitat de Catalunya through the CERCA Program. Núria Casas-Vila and Anastasia K. Pickford contributed equally to this work.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Alfred Cortés .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Casas-Vila, N., Pickford, A.K., Portugaliza, H.P., Tintó-Font, E., Cortés, A. (2021). Transcriptional Analysis of Tightly Synchronized Plasmodium falciparum Intraerythrocytic Stages by RT-qPCR. In: de Pablos, L.M., Sotillo, J. (eds) Parasite Genomics. Methods in Molecular Biology, vol 2369. Humana, New York, NY.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1680-2

  • Online ISBN: 978-1-0716-1681-9

  • eBook Packages: Springer Protocols