Skip to main content

Conducting Plant Experiments in Space and on the Moon

Part of the Methods in Molecular Biology book series (MIMB,volume 2368)

Abstract

The growth and development of plants during spaceflight have important implications for both basic and applied research supported by NASA and other international space agencies. While there have been many reviews of plant space biology, this chapter attempts to fill a gap in the literature on the actual process and methods of performing plant research in the spaceflight environment. One of the authors (JZK) has been a principal investigator on eight spaceflight projects. These experiences include using the U.S. Space Shuttle, the former Russian Space Station Mir, and the International Space Station, utilizing the Space Shuttle and Space X as launch vehicles. While there are several ways to fly an experiment into space and to obtain a spaceflight opportunity, this review focuses on using the NASA peer-reviewed sciences approach to get an experiment manifested for flight. Three narratives for the implementation of plant space biology experiments are considered from rapid turn around of a few months to a project with new hardware development that lasted 6 years. The many challenges of spaceflight research include logistical and resource constraints such as crew time, power, cold stowage, data downlinks, among others. Additional issues considered are working at NASA centers, hardware development, safety concerns, and the engineering versus science culture in space agencies. The difficulties of publishing the results from spaceflight research based on such factors as the lack of controls, limited sample size, and the indirect effects of the spaceflight environment also are summarized. Lessons learned from these spaceflight experiences are discussed in the context of improvements for future space-based research projects with plants. We also will consider new opportunities for Moon-based research via NASA’s Artemis lunar exploration program.

Key words

  • Gravitational biology
  • International Space Station (ISS)
  • Microgravity
  • Space biology
  • Spaceflight

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-1677-2_12
  • Chapter length: 34 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-1677-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Clément G, Slenzka K (2006) Fundamentals of space biology: research on cells, animals, and plants in space. Springer, New York

    CrossRef  Google Scholar 

  2. Halstead TW, Dutcher FR (1984) Status and prospects. Ann Bot 54(S3):3–18

    CrossRef  CAS  PubMed  Google Scholar 

  3. Ferl, R.J., Wheeler, R., Levine, H.G, and Paul, A.-L. (2002) Plants in space. Curr Opin Plant Biol 5, 258–263

    Google Scholar 

  4. Halstead TW, Dutcher FR (1987) Plants in space. Ann Rev Plant Physiol 38:317–345

    CrossRef  CAS  Google Scholar 

  5. Wolverton SC, Kiss JZ (2009) An update on plant space biology. Gravit Space Biol 22:13–20

    Google Scholar 

  6. Paul AL, Wheeler RM, Levine HG, Ferl RJ (2013a) Fundamental plant biology enabled by The Space Shuttle. Am J Bot 100:226–234

    CrossRef  PubMed  Google Scholar 

  7. Vandenbrink JP, Kiss JZ (2016) Space, the final frontier: a critical review of recent experiments performed in microgravity. Plant Sci 243:115–119

    CrossRef  CAS  PubMed  Google Scholar 

  8. Kordyum EL (2014) Plant cell gravisensitivity and adaptation to microgravity. Plant Biol 16:79–90

    CrossRef  PubMed  Google Scholar 

  9. Musgrave ME, Kuang A (2001) Reproduction during spaceflight by plants in the family Brassicaceae. J Gravit Physiol 8:29–32

    Google Scholar 

  10. De Micco V, Pascale S, Paradiso R, Aronne G (2014) Microgravity effects on different stages of higher plant life cycle and completion of the seed-to-seed cycle. Plant Biol 16:31–38

    CrossRef  PubMed  Google Scholar 

  11. Musgrave ME, Kuang A (2003) Plant reproductive development during spaceflight. Adv Space Biol Med 9:1–23

    CrossRef  PubMed  Google Scholar 

  12. Darwin C, Darwin F (1881) The power of movement in plants. John Murray, London

    Google Scholar 

  13. Kiss JZ (2009) Plants circling in outer space. New Phytol 182:555–557

    CrossRef  PubMed  Google Scholar 

  14. Johnsson A, Solheim BGB, Iversen T-H (2009) Gravity amplifies and microgravity decreases circumnutations in Arabidopsis thaliana stems: results from a space experiment. New Phytol 182:621–629

    CrossRef  CAS  PubMed  Google Scholar 

  15. Millar KDL, Kumar P, Correll MJ, Mullen JL, Hangarter RP, Edelmann RE, Kiss JZ (2010) A novel phototropic response to red light is revealed in microgravity. New Phytol 186:648–656

    CrossRef  PubMed  Google Scholar 

  16. Kiss JZ, Millar KDL, Edelmann RE (2012) Phototropism of Arabidopsis thaliana in microgravity and fractional gravity on the International Space Station. Planta 236:635–645

    CrossRef  CAS  PubMed  Google Scholar 

  17. Herranz R, Vandenbrink JP, Villacampa A, Manzano A, Poehlman W, Feltus FA, Kiss JZ, Medina FJ (2019) RNAseq analysis of the response of Arabidopsis thaliana to fractional gravity under blue-light stimulation during spaceflight. Front Plant Sci 10:1529

    CrossRef  PubMed  PubMed Central  Google Scholar 

  18. Vandenbrink JP, Herranz R, Poehlman WL, Feltus AF, Villacampa A, Ciska M, Medina JF, Kiss JZ (2019) RNA-seq analyses of Arabidopsis thaliana seedlings after exposure to blue-light phototropic stimuli in microgravity. Am J Bot 106:1466–1476

    CrossRef  CAS  PubMed  Google Scholar 

  19. Krikorian AD (1996) Strategies for “minimal growth maintenance” of cell cultures: A perspective on management for extended duration experimentation in the microgravity environment of a space station. Bot Rev 62:41–108

    CrossRef  CAS  PubMed  Google Scholar 

  20. Looft FJ (1986) The design of flight hardware. In: NASA Conference Publication 2401. National Aeronautics and Space Administration, Washington DC, pp 109–116

    Google Scholar 

  21. Briarty LG, Kaldeich B (1989) Biology in microgravity. ESA Publications, Noordwijk, The Netherlands, A guide for experimenters

    Google Scholar 

  22. Klaus DM (2001) Clinostats and bioreactors. Gravit Space Biol Bull 14:55–64

    CAS  PubMed  Google Scholar 

  23. Claassen DE, Spooner BS (1994) Impact of altered gravity on aspects of cell biology. Int Rev Cytol 156:301–373

    CrossRef  CAS  PubMed  Google Scholar 

  24. Kiss JZ (2014) Plant biology in reduced gravity on the Moon and Mars. Plant Biol 16(S1):12–17

    CrossRef  PubMed  Google Scholar 

  25. Limbach C, Hauslage J, Schafer C, Braun M (2005) How to activate a plant gravireceptor. Early mechanisms of gravity sensing studied in characean rhizoids during parabolic flights. Plant Physiol 139:1030–1040

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kiss JZ, Wolverton C, Wyatt SE, Hasenstein KH, van Loon J (2019) Comparison of microgravity analogs to spaceflight in studies of plant growth and development. Front Plant Sci 10:1577

    CrossRef  PubMed  PubMed Central  Google Scholar 

  27. Kiss JZ, Wright JB, Caspar T (1996) Gravitropism in roots of intermediate-starch mutants of Arabidopsis. Physiol Plant 97:237–244

    CrossRef  CAS  PubMed  Google Scholar 

  28. Kiss JZ, Guisinger MM, Miller AJ, Stackhouse KS (1997) Reduced gravitropism in hypocotyls of starch-deficient mutants of Arabidopsis. Plant Cell Physiol 38:518–525

    CrossRef  CAS  PubMed  Google Scholar 

  29. Manieri P, Brinckmann E, Brillouet C (1996) The Biorack facility and its performance during the IML-2 Spacelab mission. J Biotech 47:71–82

    CrossRef  CAS  Google Scholar 

  30. Guisinger MM, Kiss JZ (1999) The influence of microgravity and spaceflight on columella cell ultrastructure in starch-deficient mutants of Arabidopsis. Am J Bot 86:1357–1366

    CrossRef  CAS  PubMed  Google Scholar 

  31. Molas ML, Kiss JZ (2009) Phototropism and gravitropism in plants. Adv Bot Res 49:1–34

    CrossRef  CAS  Google Scholar 

  32. Kiss JZ, Mullen JL, Correll MJ, Hangarter RP (2003) Phytochromes A and B mediate red-light-induced positive phototropism in roots. Plant Physiol 131:1411–1417

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  33. Correll MJ, Edelmann RE, Hangarter RP, Mullen JL, Kiss JZ (2005) Ground-based studies of tropisms in hardware developed for the European Modular Cultivation System (EMCS). Adv Space Res 36:1203–1210

    CrossRef  Google Scholar 

  34. Brinckmann E, Schiller P (2002) Experiments with small animals in BIOLAB and EMCS on the International Space Station. Adv Space Res 30:809–814

    CrossRef  CAS  PubMed  Google Scholar 

  35. Kiss JZ, Kumar P, Millar KDL, Edelmann RE, Correll MJ (2009) Operations of a spaceflight experiment to investigate plant tropisms. Adv Space Res 44:879–886

    CrossRef  Google Scholar 

  36. Kiss JZ, Millar KDL, Kumar P, Edelmann RE, Correll MJ (2011) Improvements in the re-flight of spaceflight experiments on plant tropisms. Adv Space Res 47:545–552

    CrossRef  CAS  Google Scholar 

  37. Correll MJ, Pyle TP, Millar KDL, Sun Y, Yao J, Edelmann RE, Kiss JZ (2013) Transcriptome analyses of Arabidopsis thaliana seedlings grown in space: implications for gravity-responsive genes. Planta 238:519–533

    CrossRef  CAS  PubMed  Google Scholar 

  38. Millar KDL, Johnson CM, Edelmann RE, Kiss JZ (2011) An endogenous growth pattern of roots is revealed in seedlings grown in microgravity. Astrobiology 11:787–797

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kiss JZ, Aanes G, Schiefloe M, Coelho LHF, Millar KDL, Edelmann RE (2014) Changes in operational procedures to improve spaceflight experiments in plant biology in the European Modular Cultivation System. Adv Space Res 53:818–827

    CrossRef  Google Scholar 

  40. Valbuena MA, Manzano A, Vandenbrink JP, Pereda-Loth V, Carnero-Diaz E, Edelmann RE, Kiss JZ, Herranz R, Medina FJ (2018) The combined effects of real or simulated microgravity and red-light photoactivation on plant root meristematic cells. Planta 248:691–704

    CrossRef  CAS  PubMed  Google Scholar 

  41. NASA. (2014) Office of Small Business Programs. http://osbp.nasa.gov/SBIR-STTR.html. Accessed on April 1, 2020

  42. Ruttley TM, Evans CA, Robinson JA (2011) The importance of the International Space Station for life sciences research: past and future. Gravit. Space Biol. 22:67–81

    Google Scholar 

  43. Giulianotti MA, Low LA (2020) Pharmaceutical research enabled through microgravity: perspectives on the use of the International Space Station US National Laboratory. Pharm Res 37(1):1. https://doi.org/10.1007/s11095-019-2719-z

    CrossRef  CAS  Google Scholar 

  44. NSPIRES (2014) NASA Solicitation and Proposal Integrated Review and Evaluation System. http://nspires.nasaprs.com. Accessed on April 1, 2020

  45. Raff H, Brown D (2013) Civil, sensible, and constructive peer review in APS journals. J Appl Physiol 115:295–296

    CrossRef  PubMed  Google Scholar 

  46. National Research Council (1995) Peer Review in NASA Life Sciences Programs. National Academy of Sciences Press, Washington DC

    Google Scholar 

  47. Voels SA, Eppler DB (2004) The International Space Station as a platform for space science. Adv Space Res 34:594–599

    CrossRef  Google Scholar 

  48. Brillouet C, Brinckmann E (1999) Biorack facility performance and experiment operations on three Spacehab Shuttle to Mir missions. In: Perry M (ed) Biorack on Spacehab (SP-1222). ESA Publications, Noordwijk, The Netherlands, pp 3–21

    Google Scholar 

  49. Kiss JZ, Edelmann RE, Wood PC (1999) Gravitropism of hypocotyls of wild-type and starch-deficient Arabidopsis seedlings in spaceflight studies. Planta 209:96–103

    CrossRef  CAS  PubMed  Google Scholar 

  50. Kiss JZ, Katembe WJ, Edelmann RE (1998) Gravitropism and development of wild-type and starch-deficient mutants of Arabidopsis during spaceflight. Physiol Plant 102:493–502

    CrossRef  CAS  PubMed  Google Scholar 

  51. Perbal G (2009) From ROOTS to GRAVI-1: Twenty five years for understanding how plants sense gravity. Microgravity Sci Technol 21:3–10

    CrossRef  Google Scholar 

  52. Katembe WJ, Edelmann RE, Brinckmann E, Kiss JZ (1998) The development of spaceflight experiments with Arabidopsis as a model system in gravitropism studies. J Plant Res 111:463–470

    CrossRef  CAS  PubMed  Google Scholar 

  53. Brinckmann E (1999) Spaceflight opportunities on the ISS for plant research- the ESA perspective. Adv Space Res 24:779–788

    CrossRef  CAS  PubMed  Google Scholar 

  54. Willemsen HP, Langerak E (2007) Hardware for biological microgravity experiments in Soyuz missions. Microgravity Sci Technol 19:75–79

    CrossRef  Google Scholar 

  55. Kittang, A.-I. ,Iversen, T.-H. , Fossum, K. R. , Mazars, C. , Carnero-Diaz, E. , Boucheron-Dubuisson, E., Le Disquet, I. , Legué,V., Herranz, R., Pereda-Loth, V., and Medina, F. J. (2014) Exploration of plant growth and development using the European Modular Cultivation System facility on the International Space Station. Plant Biol 16, 528–538

    Google Scholar 

  56. Astrium (2012) Space biology product catalog. Astrium, Friedrichshafen, Germany

    Google Scholar 

  57. Brinckmann E (2005) ESA hardware for plant research on the International Space Station. Adv Space Res 36:1162–1166

    CrossRef  Google Scholar 

  58. Kiss, J.Z., Kumar, P., Bowman, R.N., Steele, M.K., Eodice, M.T., Correll, M.J., and Edelmann, R.E. (2007) Biocompatibility studies in preparation for a spaceflight experiment on plant tropisms (TROPI). Adv. Space Res. 39, 1154–1160

    Google Scholar 

  59. Camacho JR, Manning-Roach SP, Maresca EA, Levine HG (2012) BRIC-PDFU rapid turn-around spaceflight hardware. ASGSR Meeting, Abstract Book, p 87

    Google Scholar 

  60. Johnson CM, Subramanian A, Edelmann RE, Kiss JZ (2015) Morphometric analyses of petioles of seedlings grown in a spaceflight experiment. J Plant Res 128:1007–1016

    CrossRef  CAS  PubMed  Google Scholar 

  61. Johnson CM, Subramanian A, Pattathil S, Correll MJ, Kiss JZ (2017) Comparative transcriptomics indicate changes in cell wall organization and stress response in seedlings during spaceflight. Am J Bot 104:1219–1231

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  62. Brown AH (1992) Centrifuges: evolution of their uses in plant gravitational biology and new directions for research on the ground and in spaceflight. Gravit Space Biol Bull 5:43–57

    CAS  Google Scholar 

  63. Brinckmann E (2012) Centrifuges and their application for biological experiments in space. Microgravity Sci Technol 24:365–372

    CrossRef  Google Scholar 

  64. Dutcher FR, Hess EL, Halstead TW (1994) Progress in plant research in space. Adv Space Res 14:159–171

    CrossRef  CAS  PubMed  Google Scholar 

  65. Kern VD, Sack FD (1999) Irradiance dependent regulation of gravitropism by red light in protonemata of the moss Ceratodon purpureus. Planta 209:299–307

    CrossRef  CAS  PubMed  Google Scholar 

  66. Kern VD, Schwuchow JM, Reed DW, Nadeau JA, Lucas J, Skripnikov A, Sack FD (2005) Gravitropic moss cells default to spiral growth on the clinostat and in microgravity during spaceflight. Planta 221:149–157

    CrossRef  CAS  PubMed  Google Scholar 

  67. Nakashima J, Liao F, Sparks JA, Tang Y, Blancaflor EB (2014) The actin cytoskeleton is a suppressor of the endogenous skewing behaviour of Arabidopsis primary roots in microgravity. Plant Biol 16(S1):142–150

    CrossRef  PubMed  Google Scholar 

  68. Paul AL, Zupanska AK, Ostrow DT, Zhang Y, Sun Y, Li J-L, Shanker S, Farmerie WG, Amalfitano CE, Ferl RJ (2012) Spaceflight transcriptomes: unique responses to a novel environment. Astrobiology 12:40–56

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  69. NASA GeneLab (2020). https://genelab.nasa.gov. Accessed on April 1, 2020

    Google Scholar 

  70. Gilroy Life Science Lab TOAST (2020). https://astrobiology.botany.wisc.edu/astrobotany-toast. Accessed on April 1, 2020

  71. Astrobotany (2020). https://astrobotany.com. Accessed on April 1, 2020

  72. Barker R, Lombardino J, Rasmussen K, Gilroy S (2020) Test of Arabidopsis space transcriptome: a discovery environment to explore multiple plant biology spaceflight experiments. Front Plant Sci 11:147. https://doi.org/10.3389/fpls

    CrossRef  PubMed  PubMed Central  Google Scholar 

  73. Caron AR (2016) Biological Research in Canisters-Light Emitting Diode (BRIC-LED) ISS R&D Conference. San Diego, CA

    Google Scholar 

  74. Jet Propulsion Laboratory (2014) Basics of space flight. http://www2.jpl.nasa.gov/basics/bsf7-1.php. Accessed on 14 January 2020

  75. Porterfield DM, Neichitailo GS, Mashinski AL, Musgrave ME (2003) Spaceflight hardware for conducting plant growth experiments in space: the early years 1960–2000. Adv Space Res 31:183–193

    CrossRef  CAS  PubMed  Google Scholar 

  76. Perbal G, Driss-Ecole D (1994) Sensitivity to gravistimulus of lentil seedling roots grown in space during the IML 1 mission of Spacelab. Physiol Plant 90:313–318

    CrossRef  CAS  PubMed  Google Scholar 

  77. De Parolis MN, Crippa G, Chegancas J, Olivier F, Guichard J (2006) MELFI ready for science – ESA's −80 °C freezer begins work in space. ESA Bull 128:26–31

    Google Scholar 

  78. Stern SA (2013) The low-cost ticket to space. Sci Amer 308:68–73

    CrossRef  PubMed  Google Scholar 

  79. Robinson JA, Thumm TL, Thomas DA (2007) NASA utilization of the International Space Station and the Vision for Space Exploration. Acta Astronaut 61:176–184

    CrossRef  Google Scholar 

  80. Lewis ML, Reynolds JL, Cubano LA, Hatton JP, Lawless BD, Piepmeier EH (1998) Spaceflight alters microtubules and increases apoptosis in human lymphocytes (Jurkat). FASEB J 12:1007–1018

    CrossRef  CAS  PubMed  Google Scholar 

  81. Van Loon JJ, Bervoets D-J, Burger EH, Dieudonné SC, Suzanne C, Hagen J-W, Semeins CM, Doulabi BZ, Veldhuijzen PJ (1995) Decreased mineralization and increased calcium release in isolated fetal mouse long bones under near weightlessness. J Bone Min Res 10:550–557

    CrossRef  Google Scholar 

  82. Kuang A, Popova A, McClure G, Musgrave ME (2005) Dynamics of storage reserve deposition during Brassica rapa L. pollen and seed development in microgravity. Int. J. Plant Sci 166:85–96

    CrossRef  CAS  Google Scholar 

  83. Paul A-L, Ferl RJ (2011) Using green fluorescent protein (GFP) reporter genes in RNALater fixed tissue. Gravit. Space Biol. 25:40–43

    Google Scholar 

  84. Paul AL, Zupanska AK, Schultz ER, Ferl RJ (2013) Organ-specific remodeling of the Arabidopsis transcriptome in response to spaceflight. BMC Plant Biol 13:1–11

    CrossRef  CAS  Google Scholar 

  85. Paul A-L, Popp MP, Gurley WB, Guy C, Norwood KL, Ferl RJ (2005) Arabidopsis gene expression patterns are altered during spaceflight. Adv Space Res 36:1175–1181

    CrossRef  Google Scholar 

  86. Kiss JZ, Brinckmann E, Brillouet C (2000) Development and growth of several strains of Arabidopsis seedlings in microgravity. Int J Plant Sci 161:55–62

    CrossRef  CAS  PubMed  Google Scholar 

  87. Choi WG, Barker RJ, Kim SH, Swanson SJ, Gilroy S (2019) Variation in the transcriptome of different ecotypes of Arabidopsis thaliana reveals signatures of oxidative stress in plant responses to spaceflight. Am J Bot 106:123–136

    CrossRef  CAS  PubMed  Google Scholar 

  88. Zabel P, Bamsey M, Schubert D, Tajmar M (2016) Review and analysis of over 40 years of space plant growth systems. Life Sci in Space Res 10:1–16

    CrossRef  CAS  Google Scholar 

  89. Paradiso R, De Micco V, Buonomo R, Aronne G, Barbieri G, De Pascale S (2014) Soilless cultivation of soybean for Bioregenerative Life-Support Systems: a literature review and the experience of the MELiSSA Project–Food characterisation Phase I. Plant Biol 16(S1):69–78

    CrossRef  PubMed  Google Scholar 

  90. NASA Moon to Mars (2020). https://www.nasa.gov/specials/moontomars/index.html. Accessed on April 1, 2020

    Google Scholar 

  91. Clark, S. (2019) https://spaceflightnow.com/2019/06/04/nasa-picks-three-companies-to-send-commercial-landers-to-the-moon. Accessed on April 1, 2020

  92. NASA CubeSat Launch Initiative (2017) CubeSat101: basic concepts and processes for first-time CubeSat developers. https://www.nasa.gov/sites/default/files/atoms/files/nasa_csli_cubesat_101_508.pdf Accessed on April 1, 2020

  93. NASA Artemis (2020) https://www.nasa.gov/what-is-artemis. Accessed on April 1, 2020

    Google Scholar 

Download references

Acknowledgments

Thanks to NASA for continued financial support of our spaceflight research and to ESA for providing excellent research laboratories for space research. Over the years, we have had fine support from NASA centers (ARC, KSC, JSC, and MSFC) and European facilities (ESTEC and N-USOC). We also wish to acknowledge our colleagues, friends, students, and the many astronauts who have contributed to the successes of our spaceflight projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Z. Kiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Shymanovich, T., Kiss, J.Z. (2022). Conducting Plant Experiments in Space and on the Moon. In: Blancaflor, E.B. (eds) Plant Gravitropism. Methods in Molecular Biology, vol 2368. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1677-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1677-2_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1676-5

  • Online ISBN: 978-1-0716-1677-2

  • eBook Packages: Springer Protocols