Skip to main content

Immunoblot Analysis of the Regulation of TNF Receptor Family-Induced NF-κB Signaling by c-IAP Proteins

  • Protocol
  • First Online:
NF-κB Transcription Factors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2366))

Abstract

Proper maintenance of organismal homeostasis, development, and immune defense requires precise regulation of survival and signaling pathways. Inhibitor of apoptosis (IAP) proteins are evolutionarily conserved regulators of cell death and immune signaling that impact numerous cellular processes. Although initially characterized as inhibitors of apoptosis, the ubiquitin ligase activity of IAP proteins is critical for modulating various signaling pathways (e.g., NF-κB, MAPK) and cell survival. Cellular IAP1 and 2 regulate the pro-survival canonical NF-κB pathway by ubiquitinating RIP1 and themselves thus enabling recruitment of kinase (IKK) and E3 ligase (LUBAC) complexes. On the other hand, c-IAP1 and c-IAP2 are negative regulators of noncanonical NF-κB signaling by promoting ubiquitination and consequent proteasomal degradation of the NF-κB-inducing kinase NIK. Here we describe the involvement of c-IAP1 and c-IAP2 in NF-κB signaling and provide detailed methodology for examining functional roles of c-IAPs in these pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Varfolomeev E, Vucic D (2011) Inhibitor of apoptosis proteins: fascinating biology leads to attractive tumor therapeutic targets. Future Oncol 7:633–648

    Article  CAS  PubMed  Google Scholar 

  2. Ndubaku C, Cohen F, Varfolomeev E et al (2009) Targeting inhibitor of apoptosis (IAP) proteins for therapeutic intervention. Future Med Chem 1:1509–1525

    Article  CAS  PubMed  Google Scholar 

  3. Vaux DL, Silke J (2005) IAPs, RINGs and ubiquitylation. Nat Rev Mol Cell Biol 6:287–297

    Article  CAS  PubMed  Google Scholar 

  4. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  CAS  PubMed  Google Scholar 

  5. Pickart CM, Fushman D (2004) Polyubiquitin chains: polymeric protein signals. Curr Opin Chem Biol 8:610–616

    Article  CAS  PubMed  Google Scholar 

  6. Vucic D, Dixit VM, Wertz IE (2011) Ubiquitylation in apoptosis: a post-translational modification at the edge of life and death. Nat Rev Mol Cell Biol 12:439–452

    Article  CAS  PubMed  Google Scholar 

  7. Bertrand MJ, Milutinovic S, Dickson KM et al (2008) cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 30:689–700

    Article  CAS  PubMed  Google Scholar 

  8. Silke J, Brink R (2010) Regulation of TNFRSF and innate immune signalling complexes by TRAFs and cIAPs. Cell Death Differ 17:35–45

    Article  CAS  PubMed  Google Scholar 

  9. Varfolomeev E, Goncharov T, Fedorova AV et al (2008) c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor alpha (TNFα)-induced NF-κB activation. J Biol Chem 283:24295–24299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Varfolomeev E, Goncharov T, Maecker H et al (2012) Cellular inhibitors of apoptosis are global regulators of NF-kappaB and MAPK activation by members of the TNF family of receptors. Sci Signal 5:ra22

    Article  PubMed  CAS  Google Scholar 

  11. Varfolomeev E, Vucic D (2008) (Un)expected roles of c-IAPs in apoptotic and NF-κB signaling pathways. Cell Cycle 7:1511–1521

    Article  CAS  PubMed  Google Scholar 

  12. Hayden MS, Ghosh S (2004) Signaling to NF-kappaB. Genes Dev 18:2195–2224

    Article  CAS  PubMed  Google Scholar 

  13. Scheidereit C (2006) IκB kinase complexes: gateways to NF-κB activation and transcription. Oncogene 25:6685–6705

    Article  CAS  PubMed  Google Scholar 

  14. Micheau O, Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114:181–190

    Article  CAS  PubMed  Google Scholar 

  15. Gentle IE, Silke J (2011) New perspectives in TNF-R1-induced NF-kappaB signaling. Adv Exp Med Biol 691:79–88

    Article  CAS  PubMed  Google Scholar 

  16. Hayden MS, Ghosh S (2014) Regulation of NF-kappaB by TNF family cytokines. Semin Immunol 26:253–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Haas TL, Emmerich CH, Gerlach B et al (2009) Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol Cell 36:831–844

    Article  CAS  PubMed  Google Scholar 

  18. Gerlach B, Cordier SM, Schmukle AC et al (2011) Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471:591–596

    Article  CAS  PubMed  Google Scholar 

  19. Ikeda F, Deribe YL, Skanland SS et al (2011) SHARPIN forms a linear ubiquitin ligase complex regulating NF-kappaB activity and apoptosis. Nature 471:637–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tokunaga F, Nakagawa T, Nakahara M et al (2011) SHARPIN is a component of the NF-kappaB-activating linear ubiquitin chain assembly complex. Nature 471:633–636

    Article  CAS  PubMed  Google Scholar 

  21. Walczak H (2011) TNF and ubiquitin at the crossroads of gene activation, cell death, inflammation, and cancer. Immunol Rev 244:9–28

    Article  CAS  PubMed  Google Scholar 

  22. Vince JE, Chau D, Callus B et al (2008) TWEAK-FN14 signaling induces lysosomal degradation of a cIAP1-TRAF2 complex to sensitize tumor cells to TNFalpha. J Cell Biol 182:171–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dejardin E (2006) The alternative NF-kappaB pathway from biochemistry to biology: pitfalls and promises for future drug development. Biochem Pharmacol 72:1161–1179

    Article  CAS  PubMed  Google Scholar 

  24. Varfolomeev E, Blankenship JW, Wayson SM et al (2007) IAP antagonists induce autoubiquitination of c-IAPs, NF-κB activation, and TNFα-dependent apoptosis. Cell 131:669–681

    Article  CAS  PubMed  Google Scholar 

  25. Vallabhapurapu S, Matsuzawa A, Zhang W et al (2008) Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-kappaB signaling. Nat Immunol 9:1364–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zarnegar BJ, Wang Y, Mahoney DJ et al (2008) Noncanonical NF-kappaB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nat Immunol 9:1371–1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang J, Webster JD, Dugger DL et al (2019) Ubiquitin ligases cIAP1 and cIAP2 limit cell death to prevent inflammation. Cell Rep 27:2679–2689

    Article  CAS  PubMed  Google Scholar 

  28. Fulda S, Vucic D (2012) Targeting IAP proteins for therapeutic intervention in cancer. Nat Rev Drug Discov 11:109–124

    Article  CAS  PubMed  Google Scholar 

  29. Morrish E, Brumatti G, Silke J (2020) Future therapeutic directions for smac-mimetics. Cell 9(2):406

    Article  CAS  Google Scholar 

  30. Lacasse EC, Mahoney DJ, Cheung HH et al (2008) IAP-targeted therapies for cancer. Oncogene 27:6252–6275

    Article  CAS  PubMed  Google Scholar 

  31. Flygare JA, Beresini M, Budha N et al (2012) Discovery of a potent small-molecule antagonist of inhibitor of apoptosis (IAP) proteins and clinical candidate for the treatment of cancer (GDC-0152). J Med Chem 55:4101–4113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jensen S, Seidelin JB, Lacasse EC et al (2020) SMAC mimetics and RIPK inhibitors as therapeutics for chronic inflammatory diseases. Sci Signal 13(619):eaax8295

    Article  CAS  PubMed  Google Scholar 

  33. Vince JE, Wong WW, Khan N et al (2007) IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 131:682–693

    Article  CAS  PubMed  Google Scholar 

  34. De Almagro MC, Goncharov T, Newton K et al (2015) Cellular IAP proteins and LUBAC differentially regulate necrosome-associated RIP1 ubiquitination. Cell Death Dis 6:e1800

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Dynek JN, Goncharov T, Dueber EC et al (2010) c-IAP1 and UbcH5 promote K11-linked polyubiquitination of RIP1 in TNF signalling. EMBO J 29:4198–4209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Goncharov T, Hedayati S, Mulvihill MM et al (2018) Disruption of XIAP-RIP2 association blocks NOD2-mediated inflammatory signaling. Mol Cell 69:551–565

    Article  CAS  PubMed  Google Scholar 

  37. Goncharov T, Niessen K, De Almagro MC et al (2013) OTUB1 modulates c-IAP1 stability to regulate signalling pathways. EMBO J 32:1103–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Matsumoto ML, Dong KC, Yu C et al (2012) Engineering and structural characterization of a linear polyubiquitin-specific antibody. J Mol Biol 418:134–144

    Article  CAS  PubMed  Google Scholar 

  39. Matsumoto ML, Wickliffe KE, Dong KC et al (2010) K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody. Mol Cell 39:477–484

    Article  CAS  PubMed  Google Scholar 

  40. Newton K, Matsumoto ML, Ferrando RE et al (2012) Using linkage-specific monoclonal antibodies to analyze cellular ubiquitylation. Methods Mol Biol 832:185–196

    Article  CAS  PubMed  Google Scholar 

  41. Newton K, Matsumoto ML, Wertz IE et al (2008) Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies. Cell 134:668–678

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank researchers at Genentech who helped with suggestions, reagents, and comments. The authors are employees of Genentech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domagoj Vucic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Varfolomeev, E., Goncharov, T., Vucic, D. (2021). Immunoblot Analysis of the Regulation of TNF Receptor Family-Induced NF-κB Signaling by c-IAP Proteins. In: Franzoso, G., Zazzeroni, F. (eds) NF-κB Transcription Factors. Methods in Molecular Biology, vol 2366. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1669-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1669-7_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1668-0

  • Online ISBN: 978-1-0716-1669-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics