Skip to main content

Analysis of the Contribution of NF-κB in the Regulation of Chemotherapy-Induced Cell Senescence by Establishing a Tetracycline-Regulated Cell System

  • Protocol
  • First Online:
NF-κB Transcription Factors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2366))

Abstract

Therapy-induced senescence (TIS or therapy-induced premature senescence) is a key cellular program triggered in the course of cancer radiotherapy and chemotherapy with genotoxic drugs, both in cancer cells and in normal cells, whose activation critically affects the outcome of cancer therapy. Drug-induced senescent cells undergo a permanent cell cycle arrest, acquire distinctive morphological and biochemical alterations, and an enhanced secretory ability, referred to as senescence-associated secretory phenotype (SASP). The transcription factor NF-κB acts as a master regulator of the SASP, driving the expression of senescence-associated secretome components.

Here we describe protocols for the establishment of a tetracycline-regulated cell system for the investigation of the role of NF-κB in TIS. We also describe protocols routinely used in our laboratory, to investigate TIS in this Tet-On inducible expression system. Finally, we describe techniques for the validation of TIS induction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. te Poele RH, Okorokov AL, Jardine L, Cummings J, Joel SP (2002) DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res 62:1876–1883

    Google Scholar 

  2. Mirzayans R, Scott A, Cameron M, Murray D (2005) Induction of accelerated senescence by gamma radiation in human solid tumor-derived cell lines expressing wild-type TP53. Radiat Res 163:53–62

    Article  CAS  Google Scholar 

  3. Demaria M, O’Leary MN, Chang J, Shao L, Liu S, Alimirah F et al (2017) Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov 7:165–176

    Article  CAS  Google Scholar 

  4. Coppé JP, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J et al (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumour suppressor. PLoS Biol 6:2853–2868

    Article  Google Scholar 

  5. Kuilman T, Peeper DS (2009) Senescence-messaging secretome: SMS-ing cellular stress. Nat Rev Cancer 9:81–94

    Article  CAS  Google Scholar 

  6. Chien Y, Scuoppo C, Wang X, Fang X, Balgley B, Bolden JE et al (2011) Control of the senescence-associated secretory phenotype by NF-κB promotes senescence and enhances chemosensitivity. Genes Dev 25:2125–2136

    Article  CAS  Google Scholar 

  7. Crescenzi E, Pacifico F, Lavorgna A, De Palma R, D’Aiuto E, Palumbo G, Formisano S et al (2011) NF-κB-dependent cytokine secretion controls Fas expression on chemotherapy-induced premature senescent tumour cells. Oncogene 30:2707–2717

    Article  CAS  Google Scholar 

  8. Wu PC, Wang Q, Grobman L, Chu E, Wu DY (2012) Accelerated cellular senescence in solid tumour therapy. Exp Oncol 34:298–305

    CAS  PubMed  Google Scholar 

  9. Sidi R, Pasello G, Opitz I, Soltermann A, Tutic M et al (2011) Induction of senescence markers after neo-adjuvant chemotherapy of malignant pleural mesothelioma and association with clinical outcome: an exploratory analysis. Eur J Cancer 47:326–332

    Article  CAS  Google Scholar 

  10. Kim SB, Bozeman RG, Kaisani A, Kim W, Zhang L, Richardson JA et al (2016) Radiation promotes colorectal cancer initiation and progression by inducing senescence-associated inflammatory responses. Oncogene 35:3365–3375

    Article  CAS  Google Scholar 

  11. Iannello A, Thompson TW, Ardolino M, Lowe SW, Raulet DH (2013) p53-dependent chemokine production by senescent tumor cells supports NKG2D-dependent tumor elimination by natural killer cells. J Exp Med 210:2057–2069

    Article  CAS  Google Scholar 

  12. Eggert T, Wolter K, Ji J, Ma C, Yevsa T, Klotz S et al (2016) Distinct functions of senescence-associated immune responses in liver tumor surveillance and tumor progression. Cancer Cell 30:533–547

    Article  CAS  Google Scholar 

  13. Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C et al (2019) Cellular senescence: defining a path forward. Cell 179:813–827

    Article  CAS  Google Scholar 

  14. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo: distinct roles for cyclin-dependent kinases in cell cycle control. Proc Natl Acad Sci U S A 92:9363–9367

    Article  CAS  Google Scholar 

  15. Kurz DJ, Decary S, Hong Y, Erusalimsky JD (2000) Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci 113:3613–3622

    Article  CAS  Google Scholar 

  16. Muñoz-Espín D, Rovira M, Galiana I, Giménez C, Lozano-Torres B, Paez-Ribes M et al (2018) A versatile drug delivery system targeting senescent cells. EMBO Mol Med 10(9):pii: e9355

    Article  Google Scholar 

  17. Alimonti A, Nardella C, Chen Z, Clohessy JG, Carracedo A, Trotman LC et al (2010) A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis. J Clin Invest 120:681–693

    Article  CAS  Google Scholar 

  18. Muñoz-Espín D, Cañamero M, Maraver A, Gómez-López G, Contreras J, Murillo-Cuesta S et al (2013) Programmed cell senescence during mammalian embryonic development. Cell 155:1104–1118

    Article  Google Scholar 

  19. Sedelnikova OA, Horikawa I, Zimonjic DB, Popescu NC, Bonner WM, Barrett JC (2004) Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks. Nat Cell Biol 6:168–170

    Article  CAS  Google Scholar 

  20. Rossiello F, Herbig U, Longhese MP, Fumagalli M, d’Adda di Fagagna F (2014) Irreparable telomeric DNA damage and persistent DDR signalling as a shared causative mechanism of cellular senescence and ageing. Curr Opin Genet Dev 26:89–95

    Article  CAS  Google Scholar 

  21. Crescenzi E, Palumbo G, de Boer J, Brady HJ (2008) Ataxia telangiectasia mutated and p21CIP1 modulate cell survival of drug-induced senescent tumor cells: implications for chemotherapy. Clin Cancer Res 14:1877–1887

    Article  CAS  Google Scholar 

  22. Gossen M, Bujard H (2001) Tetracyclines in the control of gene expression in eukaryotes. In: Nelson M, Hillen W, Greenwald RA (eds) Tetracyclines in biology, chemistry and medicine. Birkhäuser Verlag, Basel, pp 139–157

    Chapter  Google Scholar 

  23. Baron U, Bujard H (2000) Tet repressor-based system for regulated gene expression in eukaryotic cells: principles and advances. Methods Enzymol 327:401–421

    Article  CAS  Google Scholar 

  24. Berens C, Hillen W (2003) Gene regulation by tetracyclines. Constraints of resistance regulation in bacteria shape TetR for application in eukaryotes. Eur J Biochem 270:3109–3121

    Article  CAS  Google Scholar 

  25. Baeuerle PA, Baltimore D (1988) I kappa B: a specific inhibitor of the NF-kappa B transcription factor. Science 242:540–546

    Article  CAS  Google Scholar 

  26. Brown K, Gerstberger FS, Carlson L, Franzoso G, Siebenlist U (1995) Control of IκBα proteolysis by site-specific, signal-induced phosphorylation. Science 267:1485–1491

    Article  CAS  Google Scholar 

  27. Traenckner EB, Pahl HL, Henkel T, Schmidt KN, Wilk S, Baeuerle PA (1995) Phosphorylation of human I kappa B-alpha on serines 32 and 36 controls I kappa B-alpha proteolysis and NF-kappa B activation in response to diverse stimuli. EMBO J 14:2876–2883

    Article  CAS  Google Scholar 

  28. Severino J, Allen RG, Balin S, Balin A, Cristofalo VJ (2000) Is beta-galactosidase staining a marker of senescence in vitro and in vivo? Exp Cell Res 257:162–171

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Leonardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pacifico, F., Crescenzi, E., Leonardi, A. (2021). Analysis of the Contribution of NF-κB in the Regulation of Chemotherapy-Induced Cell Senescence by Establishing a Tetracycline-Regulated Cell System. In: Franzoso, G., Zazzeroni, F. (eds) NF-κB Transcription Factors. Methods in Molecular Biology, vol 2366. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1669-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1669-7_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1668-0

  • Online ISBN: 978-1-0716-1669-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics