Skip to main content

Global Proteome Profiling to Assess Changes in Protein Abundance Using Isobaric Labeling and Liquid Chromatography-Tandem Mass Spectrometry

  • Protocol
  • First Online:
Targeted Protein Degradation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2365))

Abstract

Protein degradation is a critical component of all facets of cell biology, and recently methods have been developed to make use of targeted protein degradation as both an investigative tool and a potential therapeutic avenue. Mass spectrometry-based proteomic studies have allowed detailed characterization of changes in protein level and the biology underlying growth, development, and disease. Current methods and instrumentation allow identification and quantitative analysis of thousands of proteins in a single assay. The method described here involves cell lysis and digestion to peptides, labeling peptides with isobaric tagging TMT reagents, basic reversed phase fractionation, and liquid chromatography-tandem mass spectrometry analysis of the enriched peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bittar EE, Rivett AJ (1998) Intracellular protein degradation. In: Advances in molecular and cellular biology, vol 27, 1st edn. Jai Press Inc., Stamford, Connecticut

    Google Scholar 

  2. Hinkson IV, Elias JE (2011) The dynamic state of protein turnover: It's about time. Trends Cell Biol 21(5):293–303

    Article  CAS  Google Scholar 

  3. Popovic D, Vucic D, Dikic I (2014) Ubiquitination in disease pathogenesis and treatment. Nat Med 20(11):1242–1253

    Article  CAS  Google Scholar 

  4. Vilchez D, Saez I, Dillin A (2014) The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat Commun 5:5659

    Article  CAS  Google Scholar 

  5. Wang M, Kaufman RJ (2016) Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature 529(7586):326–335

    Article  CAS  Google Scholar 

  6. Gu S, Cui D, Chen X, Xiong X, Zhao Y (2018) PROTACs: an emerging targeting technique for protein degradation in drug discovery. BioEssays 40(4):1700247

    Article  Google Scholar 

  7. Chamberlain PP, Hamann LG (2019) Development of targeted protein degradation therapeutics. Nat Chem Biol 15:937–944

    Article  CAS  Google Scholar 

  8. Schapira M, Calabrese MF, Bullock AN, Crews CM (2019) Targeted protein degradation: expanding the toolbox. Nat Rev Drug Discov 18(12):949–963

    Article  CAS  Google Scholar 

  9. Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R, Beausoleil SA, Villen J, Haas W, Sowa ME, Gygi SP (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143:1174–1189

    Article  CAS  Google Scholar 

  10. Mathieson T, Franken H, Kosinski J, Kurzawa N, Zinn N, Sweetman G, Poeckel D, Ratnu VS, Schramm M, Becher I, Steidel M, Noh KM, Bergamini G, Beck M, Bantscheff M, Savitski MM (2018) Systematic analysis of protein turnover in primary cells. Nat Commun 9(1):689

    Article  Google Scholar 

  11. Mertins P, Tang LC, Krug K, Clark DJ, Gritsenko MA, Chen L, Clauser KR, Clauss TR, Shah P, Gillette MA, Petyuk VA, Thomas SN, Mani DR, Mundt F, Moore RJ, Hu Y, Zhao R, Schnaubelt M, Keshishian H, Monroe ME, Zhang Z, Udeshi ND, Mani D, Davies SR, Townsend RR, Chan DW, Smith RD, Zhang H, Liu T, Carr SA (2018) Reproducible workflow for multiplexed deep-scale proteome and phosphoproteome analysis of tumor tissues by liquid chromatography-mass spectrometry. Nat Protoc 13(7):1632–1661

    Article  CAS  Google Scholar 

  12. Savitski MM, Zinn N, Faelth-Savitski M, Poeckel D, Gade S, Becher I, Muelbaier M, Wagner AJ, Strohmer K, Werner T, Melchert S, Petretich M, Rutkowska A, Vappiani J, Franken H, Steidel M, Sweetman GM, Gilan O, Lam EYN, Dawson MA, Prinjha RK, Grandi P, Bergamini G, Bantscheff M (2018) Multiplexed proteome dynamics profiling reveals mechanisms controlling protein homeostasis. Cell 173(1):260–274

    Article  CAS  Google Scholar 

  13. Sperling AS, Burgess M, Keshishian H, Gasser JA, Bhatt S, Jan M, Słabicki M, Sellar RS, Fink EC, Miller PG, Liddicoat BJ, Sievers QL, Sharma R, Adams DN, Olesinski EA, Fulciniti M, Udeshi ND, Kuhn E, Letai A, Munshi NC, Carr SA, Ebert BL (2019) Patterns of substrate affinity, competition, and degradation kinetics underlie biological activity of thalidomide analogs. Blood 134(2):160–170

    Article  CAS  Google Scholar 

  14. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386

    Article  CAS  Google Scholar 

  15. Thompson A, Schäfer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Hamon C (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75(8):1895–1904

    Article  CAS  Google Scholar 

  16. Villen J, Beausoleil SA, Gerber SA, Gygi SP (2007) Large-scale phosphorylation analysis of mouse liver. Proc Natl Acad Sci U S A 104:1488–1493

    Article  CAS  Google Scholar 

  17. Treumann A, Thiede B (2010) Isobaric protein and peptide quantification: perspectives and issues. Expert Rev Proteomics 7(5):647–653

    Article  CAS  Google Scholar 

  18. Zhu W, Smith JW, Huang CM (2010) Mass spectrometry-based label-free quantitative proteomics. J Biomed Biotechnol 2010:840518

    PubMed  Google Scholar 

  19. Tolonen AC, Haas W (2014) Quantitative proteomics using reductive dimethylation for stable isotope labeling. J Vis Exp 1:89

    Google Scholar 

  20. Stokes MP, Farnsworth CL, Gu H, Jia X, Worsfold CR, Yang V, Ren JM, Lee KA, Silva JC (2015) Complementary PTM profiling of drug response in human gastric carcinoma by Immunoaffinity and IMAC methods with Total proteome analysis. Proteomes 3(3):160–183

    Article  Google Scholar 

  21. Hsu JL, Chen SH (2016) Stable isotope dimethyl labelling for quantitative proteomics and beyond. Philos Trans A Math Phys Eng Sci 374(2079):20150364

    PubMed  PubMed Central  Google Scholar 

  22. Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ, Zhang H, Zha XM, Polakiewicz RD, Comb MJ (2005) Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat Biotechnol 23(1):94–101

    Article  CAS  Google Scholar 

  23. Potu H, Peterson LF, Kandarpa M, Pal A, Sun H, Durham A, Harms PW, Hollenhorst PC, Eskiocak U, Talpaz M, Donato NJ (2017) Usp9x regulates Ets-1 ubiquitination and stability to control NRAS expression and tumorigenicity in melanoma. Nat Commun 8:14449

    Article  CAS  Google Scholar 

  24. Ting L, Rad R, Gygi SP, Haas W (2011) MS3 eliminates ratio distortion in isobaric multiplexed quantitative proteomics. Nat Methods 8(11):937–940

    Article  CAS  Google Scholar 

  25. McAlister GC, Nusinow DP, Jedrychowski MP, Wuhr M, Huttlin EL, Erickson BK, Rad R, Haas W, Gygi SP (2014) MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal Chem 86(14):7150–7158

    Article  CAS  Google Scholar 

  26. Paulo JA, O’Connell JD, Gygi SP, Triple A (2016) Knockout (TKO) proteomics standard for diagnosing ion interference in isobaric labeling experiments. J Am Soc Mass Spectrom 27(10):1620–1625

    Article  CAS  Google Scholar 

  27. Rappsilber J, Ishihama Y, Mann M (2003) Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem 75(3):663–670

    Article  CAS  Google Scholar 

  28. Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5:976–989

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew P. Stokes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Possemato, A.P., Abell, K., Stokes, M.P. (2021). Global Proteome Profiling to Assess Changes in Protein Abundance Using Isobaric Labeling and Liquid Chromatography-Tandem Mass Spectrometry. In: Cacace, A.M., Hickey, C.M., Békés, M. (eds) Targeted Protein Degradation. Methods in Molecular Biology, vol 2365. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1665-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1665-9_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1664-2

  • Online ISBN: 978-1-0716-1665-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics