Skip to main content

Analysis of Morphogenesis and Flagellar Assembly During Spermatogenesis in Planarian Flatworms

Part of the Methods in Molecular Biology book series (MIMB,volume 2364)

Abstract

Spermatogenesis is one of the most dramatic cellular differentiation events observed in animals. In particular, spermiogenesis (the final stage of spermatogenesis) involves extensive shedding of cytoplasmic organelles, dramatic nuclear rearrangements, and assembly of long flagellar structures. In planarian flatworms, the spherical nucleus present in round spermatids elongates to produce the filamentous nucleus of mature sperm. Newly formed cortical microtubules participate in cytoskeletal rearrangements observed during spermiogenesis and remain present in sperm. In addition, a pair of flagella assemble at one end of each spermatid in a process that likely involves de novo formation of centrioles. This chapter includes a brief introduction to planarian spermatogenesis and current tools for the analysis of molecular players in this process. Step-by-step protocols for isolating and imaging spermatogenic cells are provided with enough detail to be carried out by newcomers to the field who would like to study this unique organism in the laboratory.

Key words

  • Spermatogenesis
  • Spermiogenesis
  • Flagella
  • Manchette
  • Microtubules
  • Planarian
  • Platyhelminthes

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ishikawa M, Marshall WF (2011) Ciliogenesis: building the cell's antenna. Nat Rev Mol Cell Biol 12:222–234

    CrossRef  CAS  PubMed  Google Scholar 

  2. King SM (2016) Axonemal Dynein Arms. Cold Spring Harb Perspect Biol 8(11):a028100

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  3. Pitnick S, Hosken DJ, Birkhead TR (2009) Sperm morphological diversity. In: Birkhead TR, Hosken DJ, Pitnick S (eds) Sperm Biology: An evolutionary perspective. Academic Press, Cambridge, MA, pp 69–149

    CrossRef  Google Scholar 

  4. Kierszenbaum AL (2002) Intramanchette transport (IMT): managing the making of the spermatid head, centrosome, and tail. Mol Reprod Dev 63:1–4

    CrossRef  CAS  PubMed  Google Scholar 

  5. Lehti MS, Sironen A (2016) Formation and function of the manchette and flagellum during spermatogenesis. Reproduction 151:R43–R54

    CrossRef  CAS  PubMed  Google Scholar 

  6. Thomas MB, Henley C (1971) Substructure of the cortical singlet microtubules in spermatozoa of Macrostomum (Platyhelminthes, Turbellaria) as revealed by negative staining. Biol Bull 141(3):592–601

    CrossRef  CAS  PubMed  Google Scholar 

  7. Silveira M, Porter KR (1964) The spermatozoids of flatworms and their microtubular systems. Protoplasma 59:240–265

    CrossRef  CAS  Google Scholar 

  8. Justine JL (1998) Spermatozoa as phylogenetic characters for the Eucestoda. J Parasitol 84:385–408

    CrossRef  CAS  PubMed  Google Scholar 

  9. Justine JL, Lambert A, Mattei X (1985) Spermatozoon ultrastructure and phylogenetic relationships in the monogeneans (Platyhelminthes). Int J Parasitol 15:601–608

    CrossRef  CAS  PubMed  Google Scholar 

  10. Justine JL, Poddubnaya LG (2018) Spermiogenesis and spermatozoon ultrastructure in basal polyopisthocotylean monogeneans, Hexabothriidae and Chimaericolidae, and their significance for the phylogeny of the Monogenea. Parasite 25:7

    CrossRef  PubMed  PubMed Central  Google Scholar 

  11. Harrath AH, Alwasel S, Zghal F et al (2012) Ultrastructure of spermatogenesis and mature spermatozoon of the freshwater planarian Schmidtea mediterranea (Platyhelminthes, Paludicola). C R Biol 335:87–95

    CrossRef  PubMed  Google Scholar 

  12. Shibata N, Agata K (2018) RNA interference in planarians: feeding and injection of synthetic dsRNA. Methods Mol Biol 1774:455–466

    CrossRef  CAS  PubMed  Google Scholar 

  13. Newmark PA, Reddien PW, Cebria F et al (2003) Ingestion of bacterially expressed double-stranded RNA inhibits gene expression in planarians. Proc Natl Acad Sci U S A 100(Suppl 1):11861–11865

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sanchez Alvarado A, Newmark PA (1999) Double-stranded RNA specifically disrupts gene expression during planarian regeneration. Proc Natl Acad Sci U S A 96:5049–5054

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rouhana L, Weiss JA, Forsthoefel DJ et al (2013) RNA interference by feeding in vitro-synthesized double-stranded RNA to planarians: methodology and dynamics. Dev Dyn 242:718–730

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brandl H, Moon H, Vila-Farré M et al (2016) PlanMine--a mineable resource of planarian biology and biodiversity. Nucleic Acids Res 44:D764–D773

    CrossRef  CAS  PubMed  Google Scholar 

  17. Grohme MA, Schloissnig S, Rozanski A et al (2018) The genome of Schmidtea mediterranea and the evolution of core cellular mechanisms. Nature 554:56–61

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  18. Robb SM, Gotting K, Ross E et al (2015) SmedGD 2.0: the Schmidtea mediterranea genome database. Genesis 53:535–546

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  19. Robb SMC, Ross E, Alvarado AS (2008) SmedGD: the Schmidtea mediterranea genome database. Nucleic Acids Res 36:D599–D606

    CrossRef  CAS  PubMed  Google Scholar 

  20. Rozanski A, Moon H, Brandl H et al (2019) PlanMine 3.0-improvements to a mineable resource of flatworm biology and biodiversity. Nucleic Acids Res 47:D812–D820

    CrossRef  CAS  PubMed  Google Scholar 

  21. An Y, Kawaguchi A, Zhao C et al (2018) Draft genome of Dugesia japonica provides insights into conserved regulatory elements of the brain restriction gene nou-darake in planarians. Zool Lett 4:24

    CrossRef  Google Scholar 

  22. Wurtzel O, Cote LE, Poirier A et al (2015) A generic and cell-type-specific wound response precedes regeneration in planarians. Dev Cell 35:632–645

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fincher CT, Wurtzel O, de Hoog T et al (2018) Cell type transcriptome atlas for the planarian Schmidtea mediterranea. Science 360:eaaq1736

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  24. Plass M, Solana J, Wolf FA et al (2018) Cell type atlas and lineage tree of a whole complex animal by single-cell transcriptomics. Science 360(6391):eaaq1723

    CrossRef  PubMed  CAS  Google Scholar 

  25. Molinaro MA, Pearson BJ (2016) In silico lineage tracing through single cell transcriptomics identifies a neural stem cell population in planarians. Genome Biol 17:87

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  26. Zeng A, Li H, Gao X et al (2018) Prospectively isolated Tetraspanin(+) Neoblasts are adult pluripotent stem cells underlying Planaria regeneration. Cell 173(7):1593–1608

    CrossRef  CAS  PubMed  Google Scholar 

  27. Rybak-Wolf A, Solana J (2014) Whole-mount in situ hybridization using DIG-labeled probes in planarian. Methods Mol Biol 1211:41–51

    CrossRef  CAS  PubMed  Google Scholar 

  28. King RS, Newmark PA (2013) In situ hybridization protocol for enhanced detection of gene expression in the planarian Schmidtea mediterranea. BMC Dev Biol 13:8

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pearson BJ, Eisenhoffer GT, Gurley KA et al (2009) Formaldehyde-based whole-mount in situ hybridization method for planarians. Dev Dyn 238:443–450

    CrossRef  PubMed  PubMed Central  Google Scholar 

  30. Rompolas P, Patel-King RS, King SM (2009) Schmidtea mediterranea: a model system for analysis of motile cilia. Methods Cell Biol 93:81–98

    CrossRef  CAS  PubMed  Google Scholar 

  31. Rompolas P, Azimzadeh J, Marshall WF et al (2013) Analysis of ciliary assembly and function in planaria. Methods Enzymol 525:245–264

    CrossRef  CAS  PubMed  Google Scholar 

  32. King SM, Patel-King RS (2016) Planaria as a model system for the analysis of ciliary assembly and motility. Methods Mol Biol 1454:245–254

    CrossRef  CAS  PubMed  Google Scholar 

  33. Azimzadeh J, Wong ML, Downhour DM et al (2012) Centrosome loss in the evolution of planarians. Science 335:461–463

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  34. Thi-Kim Vu H, Rink JC, McKinney SA et al (2015) Stem cells and fluid flow drive cyst formation in an invertebrate excretory organ. Elife 4:e07405

    CrossRef  PubMed Central  CAS  Google Scholar 

  35. Rink JC, Thi-Kim Vu H, Sanchez Alvarado A (2011) The maintenance and regeneration of the planarian excretory system are regulated by EGFR signaling. Development 138:3769–3780

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rink JC, Gurley KA, Elliott SA et al (2009) Planarian Hh signaling regulates regeneration polarity and links Hh pathway evolution to cilia. Science 326:1406–1410

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  37. Scimone ML, Srivastava M, Bell GW et al (2011) A regulatory program for excretory system regeneration in planarians. Development 138:4387–4398

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  38. Magley RA, Rouhana L (2019) Tau tubulin kinase is required for spermatogenesis and development of motile cilia in planarian flatworms. Mol Biol Cell 30(17):2155–2170

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lesko SL, Rouhana L (2020) Dynein assembly factor with WD repeat domains 1 (DAW1) is required for the function of motile cilia in the planarian Schmidtea mediterranea. Develop Growth Differ 62(6):423–437

    CrossRef  CAS  Google Scholar 

  40. Zayas RM, Hernández A, Habermann B et al (2005) The planarian Schmidtea mediterranea as a model for epigenetic germ cell specification: analysis of ESTs from the hermaphroditic strain. Proc Natl Acad Sci U S A 102:18491–18496

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  41. Issigonis M, Newmark PA (2019) From worm to germ: germ cell development and regeneration in planarians. Curr Top Dev Biol 135:127–153

    CrossRef  CAS  PubMed  Google Scholar 

  42. Wang Y, Zayas RM, Guo T et al (2007) nanos function is essential for development and regeneration of planarian germ cells. Proc Natl Acad Sci U S A 104:5901–5906

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang Y, Stary JM, Wilhelm JE et al (2010) A functional genomic screen in planarians identifies novel regulators of germ cell development. Genes Dev 24:2081–2092

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ishida S, Yamashita Y, Teshirogi W (1991) Analytical studies of the ultrastructure and movement of spermatozoa of freshwater triclads. In: Turbellarian biology. Developments in hydrobiology, vol 69. Springer, Dordretch, pp 95–104

    CrossRef  Google Scholar 

  45. Hyman LH (1925) The reproductive system and other characters of Planaria dorotocephala Woodworth trans. Amer Microsc Soc 44:51–89

    CrossRef  Google Scholar 

  46. Stevens NM (1904) On the germ cells and the embryology of Planaria simplissima. Proc Acad Natl Sci U S A 56:208–220

    Google Scholar 

  47. Counts JT, Hester TM, Rouhana L (2017) Genetic expansion of chaperonin-containing TCP-1 (CCT/TRiC) complex subunits yields testis-specific isoforms required for spermatogenesis in planarian flatworms. Mol Reprod Dev 84:1271–1284

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cebria F, Newmark PA (2005) Planarian homologs of netrin and netrin receptor are required for proper regeneration of the central nervous system and the maintenance of nervous system architecture. Development 132:3691–3703

    CrossRef  CAS  PubMed  Google Scholar 

  49. Baguñá J, Romero R (1981) Quantitative analysis of cell types during growth, degrowth and regeneration in the planarians Dugesia mediterranea and Dugesia tigrina. Hydrobiologia 84:181–194

    CrossRef  Google Scholar 

  50. Chong T, Stary JM, Wang Y et al (2011) Molecular markers to characterize the hermaphroditic reproductive system of the planarian Schmidtea mediterranea. BMC Dev Biol 11:69

    CrossRef  PubMed  PubMed Central  Google Scholar 

  51. Iyer H, Issigonis M, Sharma PP et al (2016) A premeiotic function for boule in the planarian Schmidtea mediterranea. Proc Natl Acad Sci U S A 113:E3509–E3518

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  52. Steiner JK, Tasaki J, Rouhana L (2016) Germline defects caused by Smed-boule RNA-interference reveal that egg capsule deposition occurs independently of fertilization, ovulation, mating, or the presence of gametes in planarian flatworms. PLoS Genet 12:e1006030

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  53. Chong T. (2012) A planarian’s journey from Sardinia to the Midwest. The Node. https://thenode.biologists.com/a-planarian%E2%80%99s-journey-from-sardinia-to-the-midwest/research/

  54. Lazaro EM, Harrath AH, Stocchino GA et al (2011) Schmidtea mediterranea phylogeography: an old species surviving on a few Mediterranean islands? BMC Evol Biol 11:274

    CrossRef  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Special thanks to Sydney Lesko and Donovan Christman for assistance during development of these protocols. The authors are supported by NIH awards R15 HD082754 (LR) and R01 HD043403 (PAN). PAN is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Labib Rouhana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rouhana, L., Chong, T., Newmark, P.A. (2022). Analysis of Morphogenesis and Flagellar Assembly During Spermatogenesis in Planarian Flatworms. In: Gavin, R.H. (eds) Cytoskeleton . Methods in Molecular Biology, vol 2364. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1661-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1661-1_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1660-4

  • Online ISBN: 978-1-0716-1661-1

  • eBook Packages: Springer Protocols