Skip to main content

Efficient Multiplexed CRISPR-Cas12a Genome Editing in Plants

  • Protocol
  • First Online:
CRISPR-Cas Methods

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Cas12a (formerly Cpf1) is a Class 2 Type V-A clustered regularly interspaced short palindrome repeats (CRISPR ) system that has been widely used in plant genome editing to target AT-rich regions. Cas12a only requires short CRISPR RNAs (crRNAs) for DNA targeting, making it an ideal platform to achieve multiplexed genome engineering. Highly efficient multiplexed genome editing will allow gene family knockout for reverse genetics, manipulation of metabolic pathways, and the simultaneous introduction of multiple agronomically important traits into elite crop cultivars. To apply multiplexed genome editing in plants, here we describe a highly efficient CRISPR-Cas12a expression system and a user-friendly toolbox for vector assembly. In this system, both Cas12a and crRNAs are driven by Pol II promoters, and each crRNA is flanked by hammer head (HH) and hepatitis delta virus (HDV) ribozymes to ensure precise processing. This multiplex system is highly flexible, allowing researchers to make modifications based on plant species and project objectives. The use of this multiplexing toolbox will broaden the application of CRISPR-Cas12a in basic and translational research in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Molla KA, Karmakar S, Islam MT (2020) Wide horizons of CRISPR-Cas-derived technologies for basic biology, agriculture, and medicine. In: Islam MT, Bhowmik PK, Molla KA (eds) CRISPR-Cas methods. Springer US, New York, NY, pp 1–23

    Google Scholar 

  2. Li J-F, Norville JE, Aach J et al (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688–691

    Article  CAS  Google Scholar 

  3. Nekrasov V, Staskawicz B, Weigel D et al (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31:691–693

    Article  CAS  Google Scholar 

  4. Shan Q, Wang Y, Li J et al (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688

    Article  CAS  Google Scholar 

  5. Zhang Y, Malzahn AA, Sretenovic S et al (2019) The emerging and uncultivated potential of CRISPR technology in plant science. Nat Plants 5:778–794

    Article  Google Scholar 

  6. Ming M, Ren Q, Pan C et al (2020) CRISPR–Cas12b enables efficient plant genome engineering. Nat Plants 6:202–208

    Article  CAS  Google Scholar 

  7. Endo A, Masafumi M, Kaya H et al (2016) Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida. Sci Rep 6:38169

    Article  CAS  Google Scholar 

  8. Tang X, Lowder LG, Zhang T et al (2017) A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat Plants 3:17103

    Article  Google Scholar 

  9. Zetsche B, Gootenberg JS, Abudayyeh OO et al (2015) Cpf1 Is a single RNA-guided endonuclease of a Class 2 CRISPR-Cas system. Cell 163:759–771

    Article  CAS  Google Scholar 

  10. Xu R, Qin R, Li H et al (2017) Generation of targeted mutant rice using a CRISPR-Cpf1 system. Plant Biotechnol J 15:713–717

    Article  CAS  Google Scholar 

  11. Zhong Z, Zhang Y, You Q et al (2018) Plant genome editing using FnCpf1 and LbCpf1 nucleases at redefined and altered PAM sites. Mol Plant 11:999–1002

    Article  CAS  Google Scholar 

  12. Yin X, Biswal AK, Dionora J et al (2017) CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice. Plant Cell Rep 36:745–757

    Article  CAS  Google Scholar 

  13. Hu X, Wang C, Liu Q et al (2017) Targeted mutagenesis in rice using CRISPR-Cpf1 system. J Genet Genomics 44:71–73

    Article  Google Scholar 

  14. Malzahn AA, Tang X, Lee K et al (2019) Application of CRISPR-Cas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis. BMC Biol 17:9

    Article  Google Scholar 

  15. Schindele P, Puchta H (2020) Engineering CRISPR/LbCas12a for highly efficient, temperature-tolerant plant gene editing. Plant Biotechnol J 18:1118–1120

    Article  Google Scholar 

  16. Kim H, Kim S-T, Ryu J et al (2017) CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat Commun 8:14406

    Article  CAS  Google Scholar 

  17. Lee K, Zhang Y, Kleinstiver BP et al (2019) Activities and specificities of CRISPR-Cas9 and Cas12a nucleases for targeted mutagenesis in maize. Plant Biotechnol J 17:362–372

    Article  CAS  Google Scholar 

  18. Vu TV, Sivankalyani V, Kim E-J et al (2020) Highly efficient homology-directed repair using CRISPR/Cpf1-geminiviral replicon in tomato. Plant Biotechnol J 18:2133–2143

    Article  CAS  Google Scholar 

  19. Jia H, Orbović V, Wang N (2019) CRISPR-LbCas12a-mediated modification of citrus. Plant Biotechnol J 17:1928–1937

    Article  CAS  Google Scholar 

  20. Li B, Rui H, Li Y et al (2019) Robust CRISPR/Cpf1 (Cas12a)-mediated genome editing in allotetraploid cotton (Gossypium hirsutum). Plant Biotechnol J 17:1862–1864

    Article  Google Scholar 

  21. Liu H, Wang K, Jia Z et al (2020) Efficient induction of haploid plants in wheat by editing of TaMTL using an optimized Agrobacterium-mediated CRISPR system. J Exp Bot 71:1337–1349

    Article  CAS  Google Scholar 

  22. Wang M, Mao Y, Lu Y et al (2017) Multiplex gene editing in rice using the CRISPR-Cpf1 system. Mol Plant 10:1011–1013

    Article  CAS  Google Scholar 

  23. Tang X, Ren Q, Yang L et al (2019) Single transcript unit CRISPR 2.0 systems for robust Cas9 and Cas12a mediated plant genome editing. Plant Biotechnol J 17:1431–1445

    Article  CAS  Google Scholar 

  24. Hu X, Meng X, Li J et al (2020) Improving the efficiency of the CRISPR-Cas12a system with tRNA-crRNA arrays. Crop J 8:403–407

    Article  Google Scholar 

  25. Wang M, Mao Y, Lu Y et al (2018) Multiplex gene editing in rice with simplified CRISPR-Cpf1 and CRISPR-Cas9 systems: Simplified single transcriptional unit CRISPR systems. J Integr Plant Biol 60:626–631

    Article  CAS  Google Scholar 

  26. Zhang Y, Ren Q, Tang X, et al (2021) Expanding the scope of plant genome engineering with Cas12a orthologs and highly multiplexable editing systems. Nat Commun 12:1944

    Google Scholar 

  27. Liu H, Ding Y, Zhou Y et al (2017) CRISPR-P 2.0: an improved CRISPR-Cas9 tool for genome editing in plants. Mol Plant 10:530–532

    Article  CAS  Google Scholar 

  28. Labun K, Montague TG, Krause M et al (2019) CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Res 47:W171–W174

    Article  CAS  Google Scholar 

  29. Zhu H, Liang C (2019) CRISPR-DT: designing gRNAs for the CRISPR-Cpf1 system with improved target efficiency and specificity. Bioinformatics 35:2783–2789

    Article  CAS  Google Scholar 

  30. Lowder LG, Paul JW, Baltes NJ et al (2015) A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol 169:971–985

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation Plant Genome Research Program (award no. IOS-1758745 and IOS-2029889), the U.S. Department of Agriculture Biotechnology Risk Assessment Grant Program (award no. 2020-33522-32274), Foundation for Food and Agriculture Research grant (award no. 593603), and Syngenta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiping Qi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, Y., Qi, Y. (2021). Efficient Multiplexed CRISPR-Cas12a Genome Editing in Plants. In: Islam, M.T., Molla, K.A. (eds) CRISPR-Cas Methods. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1657-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1657-4_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1656-7

  • Online ISBN: 978-1-0716-1657-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics