Skip to main content

Databases for Protein–Protein Interactions

  • Protocol
  • First Online:
Proteomics Data Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2361))

Abstract

Protein–protein interaction networks have a crucial role in biological processes. Proteins perform multiple functions in forming physical and functional interactions in cellular systems. Information concerning an enormous number of protein interactions in a wide range of species has accumulated and has been integrated into various resources for molecular biology and systems biology. This chapter provides a review of the representative databases and the major computational methods used for protein–protein interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Licata L, Briganti L, Peluso D et al (2012) MINT, the molecular interaction database: 2012 update. Nucleic Acids Res 40:D857–D861

    CAS  PubMed  Google Scholar 

  2. Szklarczyk D, Gable AL, Lyon D et al (2019) STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607–D613

    CAS  PubMed  Google Scholar 

  3. Oughtred R, Stark C, Breitkreutz BJ et al (2019) The BioGRID interaction database: 2019 update. Nucleic Acids Res 47:D529–D541

    CAS  PubMed  Google Scholar 

  4. Kerrien S, Aranda B, Breuza L et al (2012) The IntAct molecular interaction database in 2012. Nucleic Acids Res 40:D841–D846

    CAS  PubMed  Google Scholar 

  5. Salwinski L, Miller CS, Smith AJ et al (2004) The database of interacting proteins: 2004 update. Nucleic Acids Res 32:D449–D451

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Keshava Prasad TS, Goel R, Kandasamy K et al (2009) Human protein reference database—2009 update. Nucleic Acids Res 37:D767–D772

    CAS  PubMed  Google Scholar 

  7. Brown KR, Jurisica I (2007) Unequal evolutionary conservation of human protein interactions in interologous networks. Genome Biol 8:R95

    PubMed  PubMed Central  Google Scholar 

  8. Alfarano C, Andrade CE, Anthony K et al (2005) The biomolecular interaction network database and related tools 2005 update. Nucleic Acids Res 33:D418–D424

    CAS  PubMed  Google Scholar 

  9. Güldener U, Münsterkötter M, Oesterheld M et al (2006) MPact: the MIPS protein interaction resource on yeast. Nucleic Acids Res 34:D436–D441

    PubMed  Google Scholar 

  10. Singh R, Park D, Xu J et al (2010) Struct2Net: a web service to predict protein–protein interactions using a structure-based approach. Nucleic Acids Res 38:W508–W515

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Fukuhara N, Kawabata T (2008) HOMCOS: a server to predict interacting protein pairs and interacting sites by homology modeling of complex structures. Nucleic Acids Res 36:W185–W189

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Rodgers-Melnick E, Culp M, DiFazio SP (2013) Predicting whole genome protein interaction networks from primary sequence data in model and non-model organisms using ENTS. BMC Genomics 14:608

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bairoch A, Apweiler R (1997) The SWISS-PROT protein sequence data bank and its supplement TrEMBL. Nucleic Acids Res 25:31–36

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zanzoni A, Montecchi-Palazzi L, Quondam M et al (2002) MINT: a molecular interaction database. FEBS Lett 513:135–140

    CAS  PubMed  Google Scholar 

  15. Orchard S, Kerrien S, Abbani S et al (2012) Protein interaction data curation: the International Molecular Exchange (IMEx) consortium. Nat Methods 9:345–350

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Chautard E, Fatoux-Ardore M, Ballut L et al (2011) MatrixDB, the extracellular matrix interaction database. Nucleic Acids Res 39:D235–D240

    CAS  PubMed  Google Scholar 

  17. Szklarczyk D, Franceschini A, Kuhn M et al (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39:D561–D568

    CAS  PubMed  Google Scholar 

  18. Snel B, Lehmann G, Bork P et al (2000) STRING: a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Res 28:3442–3444

    CAS  PubMed  PubMed Central  Google Scholar 

  19. von Mering C, Huynen M, Jaeggi D et al (2003) STRING: a database of predicted functional associations between proteins. Nucleic Acids Res 31:258–261

    Google Scholar 

  20. Westbrook J, Feng Z, Jain S et al (2002) The Protein Data Bank: unifying the archive. Nucleic Acids Res 30:245–248

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kiefer F, Arnold K, Künzli M et al (2009) The SWISS-MODEL repository and associated resources. Nucleic Acids Res 37:D387–D392

    CAS  PubMed  Google Scholar 

  22. Franceschini A, Szklarczyk D, Frankild S et al (2013) STRING v9.1: protein–protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41:D808–D815

    CAS  PubMed  Google Scholar 

  23. Powell S, Szklarczyk D, Trachana K et al (2012) eggNOG v3.0: orthologous groups covering 1133 organisms at 41 different taxonomic ranges. Nucleic Acids Res 40:D284–D289

    CAS  PubMed  Google Scholar 

  24. Szklarczyk D, Franceschini A, Wyder S et al (2015) STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–D452

    CAS  PubMed  Google Scholar 

  25. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Szklarczyk D, Morris JH, Cook H et al (2017) The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res 45:D362–D368

    CAS  PubMed  Google Scholar 

  27. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559

    PubMed  PubMed Central  Google Scholar 

  28. Kanehisa M, Furumichi M, Tanabe M et al (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45:D353–D361

    CAS  PubMed  Google Scholar 

  29. Fabregat A, Sidiropoulos K, Garapati P et al (2016) The reactome pathway knowledgebase. Nucleic Acids Res 44:D481–D487

    CAS  PubMed  Google Scholar 

  30. Breitkreutz BJ, Stark C, Tyers M (2003) The GRID: the general repository for interaction datasets. Genome Biol 4:R23

    PubMed  PubMed Central  Google Scholar 

  31. Firdous P, Nissar K, Ali S et al (2018) Genetic testing of maturity-onset diabetes of the young current status and future perspectives. Front Endocrinol 9:253

    Google Scholar 

  32. Skrzypek MS, Nash RS, Wong ED et al (2018) Saccharomyces genome database informs human biology. Nucleic Acids Res 46:D736–D742

    CAS  PubMed  Google Scholar 

  33. Skrzypek MS, Binkley J, Binkley G et al (2017) The Candida Genome Database (CGD): incorporation of assembly 22, systematic identifiers and visualization of high throughput sequencing data. Nucleic Acids Res 45:D592–D596

    CAS  PubMed  Google Scholar 

  34. McDowall MD, Harris MA, Lock A et al (2015) PomBase 2015: updates to the fission yeast database. Nucleic Acids Res 43:D656–D661

    CAS  PubMed  Google Scholar 

  35. Wishart DS, Feunang YD, Guo AC et al (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46:D1074–D1082

    CAS  PubMed  Google Scholar 

  36. Huang X, Dixit VM (2016) Drugging the undruggables: exploring the ubiquitin system for drug development. Cell Res 26:484–498

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Cromm PM, Crews CM (2017) Targeted protein degradation: from chemical biology to drug discovery. Cell Chem Biol 24:1181–1190

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lamesch P, Berardini TZ, Li D et al (2012) The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40:D1202–D1210

    CAS  PubMed  Google Scholar 

  39. Gramates LS, Marygold SJ, Santos GD et al (2017) FlyBase at 25: looking to the future. Nucleic Acids Res 45:D663–D671

    CAS  PubMed  Google Scholar 

  40. The UniProt Consortium (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45:D158–D169

    Google Scholar 

  41. Hubbard TJP, Aken BL, Ayling S et al (2009) Ensembl 2009. Nucleic Acids Res 37:D690–D697

    CAS  PubMed  Google Scholar 

  42. Degtyarenko K, de Matos P, Ennis M et al (2008) ChEBI: a database and ontology for chemical entities of biological interest. Nucleic Acids Res 36:D344–D350

    CAS  PubMed  Google Scholar 

  43. Benson DA, Karsch-Mizrachi I, Lipman DJ et al (2009) GenBank. Nucleic Acids Res 37:D26–D31

    CAS  PubMed  Google Scholar 

  44. Kerrien S, Alam-Faruque Y, Aranda B et al (2007) IntAct—open source resource for molecular interaction data. Nucleic Acids Res 35:D561–D565

    CAS  PubMed  Google Scholar 

  45. Barrell D, Dimmer E, Huntley RP et al (2009) The GOA database in 2009—an integrated gene ontology annotation resource. Nucleic Acids Res 37:D396–D403

    CAS  PubMed  Google Scholar 

  46. Aranda B, Achuthan P, Alam-Faruque Y et al (2010) The IntAct molecular interaction database in 2010. Nucleic Acids Res 38:D525–D531

    CAS  PubMed  Google Scholar 

  47. Kerrien S, Orchard S, Montecchi-Palazzi L et al (2007) Broadening the horizon—level 2.5 of the HUPO-PSI format for molecular interactions. BMC Biol 5:44

    PubMed  PubMed Central  Google Scholar 

  48. del Toro N, Dumousseau M, Orchard S et al (2013) A new reference implementation of the PSICQUIC web service. Nucleic Acids Res 41:W601–W606

    PubMed  PubMed Central  Google Scholar 

  49. Orchard S, Ammari M, Aranda B et al (2014) The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res 42:D358–D363

    CAS  PubMed  Google Scholar 

  50. Chatr-aryamontri A, Ceol A, Peluso D et al (2009) VirusMINT: a viral protein interaction database. Nucleic Acids Res 37:D669–D673

    CAS  PubMed  Google Scholar 

  51. Xenarios I, Rice DW, Salwinski L et al (2000) DIP: the database of interacting proteins. Nucleic Acids Res 28:289–291

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Xenarios I, Salwinski L, Duan XJ et al (2002) DIP, the database of interacting proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res 30:303–305

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Xenarios I, Fernandez E, Salwinski L et al (2001) DIP: the database of interacting proteins: 2001 update. Nucleic Acids Res 29:239–241

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Deane CM, Salwinski L, Xenarios I et al (2002) Protein interactions: two methods for assessment of the reliability of high throughput observations. Mol Cell Proteomics 1:349–356

    CAS  PubMed  Google Scholar 

  55. Peri S, Navarro JD, Amanchy R et al (2003) Development of human protein reference databases an initial platform for approaching systems biology in humans. Genome Res 13:2363–2371

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hamosh A, Scott AF, Amberger J et al (2002) Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 30:52–55

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wheeler DL, Barrett T, Benson DA et al (2008) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 36:D13–D21

    CAS  PubMed  Google Scholar 

  58. Kikuno R, Nagase T, Nakayama M et al (2004) HUGE: a database for human KIAA proteins, a 2004 update integrating HUGEppi and ROUGE. Nucleic Acids Res 32:D502–D504

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Mishra GR, Suresh M, Kumaran K et al (2006) Human protein reference database—2006 update. Nucleic Acids Res 34:D411–D414

    CAS  PubMed  Google Scholar 

  60. Kandasamy K, Sujatha Mohan S, Raju R et al (2010) NetPath: a public resource of curated signal transduction pathways. Genome Biol 11:R3

    PubMed  PubMed Central  Google Scholar 

  61. Kandasamy K, Keerthikumar S, Goel R et al (2009) Human Proteinpedia: a unified discovery resource for proteomics research. Nucleic Acids Res 37:D773–D781

    CAS  PubMed  Google Scholar 

  62. Maglott D, Ostell J, Pruitt KD et al (2011) Entrez gene: gene-centered information at NCBI. Nucleic Acids Res 39:D52–D57

    CAS  PubMed  Google Scholar 

  63. Berger SI, Posner JM, Ma’ayan A (2007) Genes2Networks: connecting lists of gene symbols using mammalian protein interactions databases. BMC Bioinformatics 8:372

    PubMed  PubMed Central  Google Scholar 

  64. Avila-Campillo I, Drew K, Lin J et al (2007) BioNetBuilder: automatic integration of biological networks. Bioinformatics 23:392–393

    CAS  PubMed  Google Scholar 

  65. Edwards RJ, Davey NE, Shields DC (2008) CompariMotif: quick and easy comparisons of sequence motifs. Bioinformatics 24:1307–1309

    CAS  PubMed  Google Scholar 

  66. Brown KR, Jurisica I (2005) Online predicted human interaction database. Bioinformatics 21:2076–2082

    CAS  PubMed  Google Scholar 

  67. Yu H, Luscombe NM, Lu HX et al (2004) Annotation transfer between genomes: protein–protein interologs and protein–DNA regulogs. Genome Res 14:1107–1118

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Lord PW, Stevens RD, Brass A et al (2003) Investigating semantic similarity measures across the gene ontology: the relationship between sequence and annotation. Bioinformatics 19:1275–1283

    CAS  PubMed  Google Scholar 

  69. Brown KR, Otasek D, Ali M et al (2009) NAViGaTOR: network analysis, visualization and graphing Toronto. Bioinformatics 25:3327–3329

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Bader GD, Donaldson I, Wolting C et al (2001) BIND—the biomolecular interaction network database. Nucleic Acids Res 29:242–245

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Zahiri J, Bozorgmehr JH, Masoudi-Nejad A (2013) Computational prediction of protein–protein interaction networks: algorithms and resources. Curr Genomics 14:397–414

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Batagelj V, Mrvar A (1998) Pajek-program for large network analysis. Connections 2:47–57

    Google Scholar 

  73. Bader GD, Hogue CWV (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4:2

    PubMed  PubMed Central  Google Scholar 

  74. Bader GD, Betel BD, Hogue CWV (2003) BIND: the biomolecular interaction network database. Nucleic Acids Res 31:248–250

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Güldener U, Münsterkötter M, Kastenmüller G et al (2005) CYGD: the comprehensive yeast genome database. Nucleic Acids Res 33:D364–D368

    PubMed  Google Scholar 

  76. Ruepp A, Zollner A, Maier D et al (2004) The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Res 32:5539–5545

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Ding Z, Kihara D (2018) Computational methods for predicting protein–protein interactions using various protein features. Curr Protoc Protein Sci 93:e62

    PubMed  PubMed Central  Google Scholar 

  78. Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Browne F, Zheng H, Wang H et al (2010) From experimental approaches to computational techniques: a review on the prediction of protein–protein interactions. Adv Artif Int 2010:924529

    Google Scholar 

  80. Blum T, Briesemeister S, Kohlbacher O (2009) MultiLoc2: integrating phylogeny and gene ontology terms improves subcellular protein localization prediction. BMC Bioinformatics 10:274

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is supported by JSPS Grants-in-Aid for Scientific Research (17H06331, 20K19916, 18H04113).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nakajima, N., Akutsu, T., Nakato, R. (2021). Databases for Protein–Protein Interactions. In: Cecconi, D. (eds) Proteomics Data Analysis. Methods in Molecular Biology, vol 2361. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1641-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1641-3_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1640-6

  • Online ISBN: 978-1-0716-1641-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics