Skip to main content

Protein Secretion Prediction Tools and Extracellular Vesicles Databases

  • Protocol
  • First Online:
Proteomics Data Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2361))

Abstract

Secreted proteins play important roles in several biological processes such as growth, proliferation differentiation, cell-cell communication, migration, and apoptosis; moreover, these extracellular molecules mediate homeostasis by influencing the cross-talking within the surrounding tissues. Currently, the research area of cell secretome has become of great interest since the profiling of secreted proteins could be essential for the biomarker discovery and for the identification of new therapeutic strategies. Several bioinformatic platforms have been implemented for the in silico characterization of secreted proteins: this chapter describes a typical workflow for the analysis of proteins secreted by cultured cells through bioinformatic approaches. Central issue is related to discrimination between proteins secreted by classical and non-classical pathways. Therefore, specific prediction tools for the classification of candidate secreted proteins are here presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM (2000) Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the Secretome. Microbiol Mol Biol Rev 64(3):515–547. https://doi.org/10.1128/mmbr.64.3.515-547.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Caccia D, Dugo M, Callari M, Bongarzone I (2013) Bioinformatics tools for secretome analysis. Biochim Biophys Acta 1834(11):2442–2453. https://doi.org/10.1016/j.bbapap.2013.01.039

    Article  CAS  PubMed  Google Scholar 

  3. Song P, Kwon Y, Joo JY, Kim DG, Yoon JH (2019) Secretomics to discover regulators in diseases. Int J Mol Sci 20(16). https://doi.org/10.3390/ijms20163893

  4. Severino V, Farina A, Chambery A (2013) Analysis of secreted proteins. Methods Mol Biol 1002:37–60. https://doi.org/10.1007/978-1-62703-360-2_4

    Article  CAS  PubMed  Google Scholar 

  5. Brandi J, Manfredi M, Speziali G, Gosetti F, Marengo E, Cecconi D (2018) Proteomic approaches to decipher cancer cell secretome. Semin Cell Dev Biol 78:93–101. https://doi.org/10.1016/j.semcdb.2017.06.030

    Article  CAS  PubMed  Google Scholar 

  6. von Heijne G (1986) A new method for predicting signal sequence cleavage sites. Nucleic Acids Res 14(11):4683–4690. https://doi.org/10.1093/nar/14.11.4683

    Article  Google Scholar 

  7. Frank K, Sippl MJ (2008) High-performance signal peptide prediction based on sequence alignment techniques. Bioinformatics 24(19):2172–2176. https://doi.org/10.1093/bioinformatics/btn422

    Article  CAS  PubMed  Google Scholar 

  8. Lai JS, Cheng CW, Sung TY, Hsu WL (2012) Computational comparative study of tuberculosis proteomes using a model learned from signal peptide structures. PLoS One 7(4):e35018. https://doi.org/10.1371/journal.pone.0035018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kall L, Krogh A, Sonnhammer EL (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338(5):1027–1036. https://doi.org/10.1016/j.jmb.2004.03.016

    Article  CAS  PubMed  Google Scholar 

  10. Reynolds SM, Kall L, Riffle ME, Bilmes JA, Noble WS (2008) Transmembrane topology and signal peptide prediction using dynamic bayesian networks. PLoS Comput Biol 4(11):e1000213. https://doi.org/10.1371/journal.pcbi.1000213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Almagro Armenteros JJ, Tsirigos KD, Sonderby CK, Petersen TN, Winther O, Brunak S, von Heijne G, Nielsen H (2019) SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol 37(4):420–423. https://doi.org/10.1038/s41587-019-0036-z

    Article  CAS  PubMed  Google Scholar 

  12. Viklund H, Bernsel A, Skwark M, Elofsson A (2008) SPOCTOPUS: a combined predictor of signal peptides and membrane protein topology. Bioinformatics 24(24):2928–2929. https://doi.org/10.1093/bioinformatics/btn550

    Article  CAS  PubMed  Google Scholar 

  13. Nugent T, Jones DT (2009) Transmembrane protein topology prediction using support vector machines. BMC Bioinformatics 10:159. https://doi.org/10.1186/1471-2105-10-159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305(3):567–580. https://doi.org/10.1006/jmbi.2000.4315

    Article  CAS  PubMed  Google Scholar 

  15. Bagos PG, Nikolaou EP, Liakopoulos TD, Tsirigos KD (2010) Combined prediction of tat and sec signal peptides with hidden Markov models. Bioinformatics 26(22):2811–2817. https://doi.org/10.1093/bioinformatics/btq530

    Article  CAS  PubMed  Google Scholar 

  16. Rose RW, Bruser T, Kissinger JC, Pohlschroder M (2002) Adaptation of protein secretion to extremely high-salt conditions by extensive use of the twin-arginine translocation pathway. Mol Microbiol 45(4):943–950. https://doi.org/10.1046/j.1365-2958.2002.03090.x

    Article  CAS  PubMed  Google Scholar 

  17. Bendtsen JD, Nielsen H, Widdick D, Palmer T, Brunak S (2005) Prediction of twin-arginine signal peptides. BMC Bioinformatics 6:167. https://doi.org/10.1186/1471-2105-6-167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Restrepo-Montoya D, Pino C, Nino LF, Patarroyo ME, Patarroyo MA (2011) NClassG+: a classifier for non-classically secreted gram-positive bacterial proteins. BMC Bioinformatics 12:21. https://doi.org/10.1186/1471-2105-12-21

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bendtsen JD, Jensen LJ, Blom N, Von Heijne G, Brunak S (2004) Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng Des Sel 17(4):349–356. https://doi.org/10.1093/protein/gzh037

    Article  CAS  PubMed  Google Scholar 

  20. Imai K, Asakawa N, Tsuji T, Akazawa F, Ino A, Sonoyama M, Mitaku S (2008) SOSUI-GramN: high performance prediction for sub-cellular localization of proteins in gram-negative bacteria. Bioinformation 2(9):417–421. https://doi.org/10.6026/97320630002417

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhao L, Poschmann G, Waldera-Lupa D, Rafiee N, Kollmann M, Stuhler K (2019) OutCyte: a novel tool for predicting unconventional protein secretion. Sci Rep 9(1):19448. https://doi.org/10.1038/s41598-019-55351-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Almagro Armenteros JJ, Salvatore M, Emanuelsson O, Winther O, von Heijne G, Elofsson A, Nielsen H (2019) Detecting sequence signals in targeting peptides using deep learning. Life Sci Alliance 2(5):e201900429. https://doi.org/10.26508/lsa.201900429

    Article  PubMed  PubMed Central  Google Scholar 

  23. Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35(Web Server issue):W585–W587. https://doi.org/10.1093/nar/gkm259

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ, Brinkman FS (2010) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26(13):1608–1615. https://doi.org/10.1093/bioinformatics/btq249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Keerthikumar S, Chisanga D, Ariyaratne D, Al Saffar H, Anand S, Zhao K, Samuel M, Pathan M, Jois M, Chilamkurti N, Gangoda L, Mathivanan S (2016) ExoCarta: a web-based compendium of exosomal cargo. J Mol Biol 428(4):688–692. https://doi.org/10.1016/j.jmb.2015.09.019

    Article  CAS  PubMed  Google Scholar 

  26. Pathan M, Fonseka P, Chitti SV, Kang T, Sanwlani R, Van Deun J, Hendrix A, Mathivanan S (2019) Vesiclepedia 2019: a compendium of RNA, proteins, lipids and metabolites in extracellular vesicles. Nucleic Acids Res 47(D1):D516–D519. https://doi.org/10.1093/nar/gky1029

    Article  CAS  PubMed  Google Scholar 

  27. Brandi J, Dalla Pozza E, Dando I, Biondani G, Robotti E, Jenkins R, Elliott V, Park K, Marengo E, Costello E, Scarpa A, Palmieri M, Cecconi D (2016) Secretome protein signature of human pancreatic cancer stem-like cells. J Proteome 136:1–12. https://doi.org/10.1016/j.jprot.2016.01.017

    Article  CAS  Google Scholar 

  28. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson A, Kampf C, Sjostedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist PH, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Ponten F (2015) Proteomics. Tissue-based map of the human proteome. Science 347(6220):1260419. https://doi.org/10.1126/science.1260419

    Article  CAS  PubMed  Google Scholar 

  29. Bonafede R, Brandi J, Manfredi M, Scambi I, Schiaffino L, Merigo F, Turano E, Bonetti B, Marengo E, Cecconi D, Mariotti R (2019) The anti-apoptotic effect of ASC-Exosomes in an in vitro ALS model and their proteomic analysis. Cell 8(9). https://doi.org/10.3390/cells8091087

  30. Adamo A, Brandi J, Caligola S, Delfino P, Bazzoni R, Carusone R, Cecconi D, Giugno R, Manfredi M, Robotti E, Marengo E, Bassi G, Takam Kamga P, Dal Collo G, Gatti A, Mercuri A, Arigoni M, Olivero M, Calogero RA, Krampera M (2019) Extracellular vesicles mediate mesenchymal stromal cell-dependent regulation of B cell PI3K-AKT signaling pathway and actin cytoskeleton. Front Immunol 10:446. https://doi.org/10.3389/fimmu.2019.00446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Brandi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cecconi, D., Di Carlo, C., Brandi, J. (2021). Protein Secretion Prediction Tools and Extracellular Vesicles Databases. In: Cecconi, D. (eds) Proteomics Data Analysis. Methods in Molecular Biology, vol 2361. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1641-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1641-3_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1640-6

  • Online ISBN: 978-1-0716-1641-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics