Skip to main content

Inhibition of Rhopalosiphum maidis (Corn Leaf Aphid) Growth on Maize by Virus-Induced Gene Silencing with Sugarcane Mosaic Virus

  • Protocol
  • First Online:
RNAi Strategies for Pest Management

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2360))

  • 895 Accesses

Abstract

The corn leaf aphid (Rhopalosiphum maidis), a damaging pest of maize (Zea mays), is not controlled by the insecticidal proteins in commercially available transgenic crop varieties. One promising approach is to reduce aphid growth and fecundity by targeting the expression of essential genes using plant-mediated RNA interference (RNAi). Here we describe a method whereby Sugarcane Mosaic Virus (SCMV), a positive-strand RNA virus in the Potyviridae family, is used for virus-induced gene silencing (VIGS) of gene expression in R. maidis. A segment of the R. maidis target gene is cloned into SCMV, maize plants are infected with the transgenic virus, aphids are placed on the virus-infected plants and, after a few days of feeding, decreases in target gene expression and aphid reproduction are assessed. This VIGS method can be used for rapid screening of suitable RNAi targets for aphid pest control, as well as to study the in vivo function of specific aphid genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bing JW, Guthrie WD, Dicke FF et al (1991) Seedling stage feeding by corn leaf aphid (Homoptera, Aphididae)—influence on plant development in maize. J Econ Entomol 84(2):625–632

    Article  Google Scholar 

  2. Carena MJ, Glogoza P (2004) Resistance of maize to the corn leaf aphid: a review. Maydica 49:241–254

    Google Scholar 

  3. Foott WH, Timmins PR (1973) Effects of infestations by corn leaf aphid, Rhopalosiphum maidis (Homoptera-Aphididae), on field corn in southwestern Ontario. Can Entomol 105(3):449–458

    Article  Google Scholar 

  4. El-Muadhidi MA, Makkouk KM, Kumari SG et al (2001) Survey for legume and cereal viruses in Iraq. Phytopathol Mediterr 40:224–223

    Google Scholar 

  5. Hawkes JR, Jones RAC (2005) Incidence and distribution of barley yellow dwarf virus and cereal yellow dwarf virus in over-summering grasses in a Mediterranean-type environment. Aust J Agric Res 56(3):257–270. https://doi.org/10.1071/AR04259

    Article  Google Scholar 

  6. Jarošová J, Chrpová J, Šíp V et al (2013) A comparative study of the Barley yellow dwarf virus species PAV and PAS: distribution, accumulation and host resistance. Plant Pathol 62(2):436–443. https://doi.org/10.1111/j.1365-3059.2012.02644.x

    Article  CAS  Google Scholar 

  7. Power AG, Borer ET, Hosseini P et al (2011) The community ecology of barley/cereal yellow dwarf viruses in Western US grasslands. Virus Res 159(2):95–100. https://doi.org/10.1016/j.virusres.2011.05.016

    Article  CAS  PubMed  Google Scholar 

  8. Krueger EN, Beckett RJ, Gray SM et al (2013) The complete nucleotide sequence of the genome of Barley yellow dwarf virus-RMV reveals it to be a new Polerovirus distantly related to other yellow dwarf viruses. Front Microbiol 4:205. https://doi.org/10.3389/fmicb.2013.00205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Betsiashvili M, Ahern KR, Jander G (2015) Additive effects of two quantitative trait loci that confer Rhopalosiphum maidis (corn leaf aphid) resistance in maize inbred line Mo17. J Exp Bot 66:571–578. https://doi.org/10.1093/jxb/eru379

    Article  CAS  PubMed  Google Scholar 

  10. Meihls LN, Handrick V, Glauser G et al (2013) Natural variation in maize aphid resistance is associated with 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside methyltransferase activity. Plant Cell 25(6):2341–2355. https://doi.org/10.1105/tpc.113.112409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tzin V, Lindsay P, Christensen SA et al (2015) Genetic mapping shows intraspecific variation and transgressive segregation for caterpillar-induced aphid resistance in maize. Mol Ecol 24:5739–5750. https://doi.org/10.1111/mec.13418

    Article  CAS  PubMed  Google Scholar 

  12. Tzin V, Fernandez-Pozo N, Richter A et al (2015) Dynamic maize responses to aphid feeding are revealed by a time series of transcriptomic and metabolomic assays. Plant Physiol 169:1727–1743. https://doi.org/10.1104/pp.15.01039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Baum JA, Bogaert T, Clinton W et al (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25(11):1322–1326

    Article  CAS  PubMed  Google Scholar 

  14. Mao YB, Cai WJ, Wang JW et al (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25(11):1307–1313

    Article  CAS  PubMed  Google Scholar 

  15. Pitino M, Coleman AD, Maffei ME et al (2011) Silencing of aphid genes by dsRNA feeding from plants. PLoS One 6(10):e25709. https://doi.org/10.1371/journal.pone.0025709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Elzinga DA, De Vos M, Jander G (2014) Suppression of plant defenses by a Myzus persicae (green peach aphid) salivary effector protein. Mol Plant-Microbe Interact 27:747–756. https://doi.org/10.1016/j.pbi.2013.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Naessens E, Dubreuil G, Giordanengo P et al (2015) A secreted MIF cytokine enables aphid feeding and represses plant immune responses. Curr Biol 25(14):1898–1903. https://doi.org/10.1016/j.cub.2015.05.047

    Article  CAS  PubMed  Google Scholar 

  18. Tzin V, Yang X, Jing X et al (2015) RNA interference against gut osmoregulatory genes in phloem-feeding insects. J Insect Physiol 79:105–112. https://doi.org/10.1016/j.jinsphys.2015.06.006

    Article  CAS  PubMed  Google Scholar 

  19. Rauf I, Asif M, Amin I et al (2019) Silencing cathepsin L expression reduces Myzus persicae protein content and the nutritional value as prey for Coccinella septempunctata. Insect Mol Biol 28:785–797. https://doi.org/10.1111/imb.12589

    Article  CAS  PubMed  Google Scholar 

  20. Guo HY, Song XG, Wang GL et al (2014) Plant-generated artificial small RNAs mediated aphid resistance. PLoS One 9(5):e97410. https://doi.org/10.1371/journal.pone.0097410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bhatia V, Bhattacharya R, Uniyal PL et al (2012) Host generated siRNAs attenuate expression of serine protease gene in Myzus persicae. PLoS One 7(10):e46343. https://doi.org/10.1371/journal.pone.0046343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mao JJ, Zeng FR (2014) Plant-mediated RNAi of a gap gene-enhanced tobacco tolerance against the Myzus persicae. Transgenic Res 23(1):145–152. https://doi.org/10.1007/s11248-013-9739-y

    Article  CAS  PubMed  Google Scholar 

  23. Faisal M, Abdel-Salam EM, Alatar AA et al (2019) Genetic transformation and siRNA-mediated gene silencing for aphid resistance in tomato. Agronomy 9(12). https://doi.org/10.3390/agronomy9120893

  24. Hayward A, Padmanabhan M, Dinesh-Kumar SP (2011) Virus-induced gene silencing in Nicotiana benthamiana and other plant species. Methods Mol Biol 678:55–63. https://doi.org/10.1007/978-1-60761-682-5_5

    Article  CAS  PubMed  Google Scholar 

  25. Senthil-Kumar M, Mysore KS (2014) Tobacco rattle virus-based virus-induced gene silencing in Nicotiana benthamiana. Nat Protoc 9(7):1549–1562. https://doi.org/10.1038/nprot.2014.092

    Article  CAS  PubMed  Google Scholar 

  26. Ding SW, Voinnet O (2007) Antiviral immunity directed by small RNAs. Cell 130(3):413–426. https://doi.org/10.1016/j.cell.2007.07.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mei Y, Liu G, Zhang C et al (2019) A sugarcane mosaic virus vector for gene expression in maize. Plant Direct 3(8):e00158. https://doi.org/10.1002/pld3.158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chung SH, Bigham M, Lappe RR et al. (2021) A sugarcane mosaic virus vector for rapid in planta screening of proteins that inhibit the growth of insect herbivores. Plant Biotech J. https://doi.org/10.1111/pbi.13585

  29. Mei Y, Whitham SA (2018) Virus-induced gene silencing in maize with a foxtail mosaic virus vector. Methods Mol Biol 1676:129–139. https://doi.org/10.1007/978-1-4939-7315-6_7

    Article  CAS  PubMed  Google Scholar 

  30. Mei Y, Zhang C, Kernodle BM et al (2016) A foxtail mosaic virus vector for virus-induced gene silencing in maize. Plant Physiol 171:760–772. https://doi.org/10.1104/pp.16.00172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mei Y, Beernink BM, Ellison EE et al (2019) Protein expression and gene editing in monocots using foxtail mosaic virus vectors. Plant Direct 3(11):e00181. https://doi.org/10.1002/pld3.181

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ding XS, Mannas SW, Bishop BA et al (2018) An improved brome mosaic virus silencing vector: greater insert stability and more extensive VIGS. Plant Physiol 176(1):496–510. https://doi.org/10.1104/pp.17.00905

    Article  CAS  PubMed  Google Scholar 

  33. Zhou T, Liu X, Fan Z (2018) Use of a virus gene silencing vector for maize functional genomics research. Methods Mol Biol 1676:141–150. https://doi.org/10.1007/978-1-4939-7315-6_8

    Article  CAS  PubMed  Google Scholar 

  34. Jarugula S, Willie K, Stewart LR (2018) Barley stripe mosaic virus (BSMV) as a virus-induced gene silencing vector in maize seedlings. Virus Genes 54(4):616–620. https://doi.org/10.1007/s11262-018-1569-9

    Article  CAS  PubMed  Google Scholar 

  35. Chen W, Shakir S, Bigham M et al (2019) Genome sequence of the corn leaf aphid (Rhopalosiphum maidis Fitch). Gigascience 8(4):giz033. https://doi.org/10.1093/gigascience/giz033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lück S, Kreszies T, Strickert M et al (2019) siRNA-finder (si-fi) software for RNAi-target design and off-target prediction. Front. Plant Sci 10:1023. https://doi.org/10.3389/fpls.2019.01023

    Article  Google Scholar 

  37. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  38. Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326(5956):1112–1115. https://doi.org/10.1126/science.1178534

    Article  CAS  PubMed  Google Scholar 

  39. Gustafson TJ, de Leon N, Kaeppler SM et al (2018) Genetic analysis of sugarcane mosaic virus resistance in the Wisconsin diversity panel of maize. Crop Sci 58:1853–1865

    Article  CAS  Google Scholar 

  40. Grimsley NH, Ramos C, Hein T et al (1988) Meristematic tissues of maize plants are most susceptible to agroinfection with maize streak virus. Bio/Technology 6(2):185–189. https://doi.org/10.1038/nbt0288-185

    Article  Google Scholar 

  41. Beernink BM, Holan KL, Lappe RR et al (2021) Direct agroinoculation of maize seedlings by injection with recombinant foxtail mosaic virus and sugarcane mosaic virus infectious clones. J Vis Exp 168: e62277 https://doi.org/10.3791/62277

Download references

Acknowledgments

This research was supported by the Insect Allies program of the Defense Advanced Research Projects Agency (DARPA), agreement HR0011-17-2-0053 to G.J. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of DARPA or the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Jander .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chung, S.H., Jander, G. (2022). Inhibition of Rhopalosiphum maidis (Corn Leaf Aphid) Growth on Maize by Virus-Induced Gene Silencing with Sugarcane Mosaic Virus. In: Vaschetto, L.M. (eds) RNAi Strategies for Pest Management. Methods in Molecular Biology, vol 2360. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1633-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1633-8_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1632-1

  • Online ISBN: 978-1-0716-1633-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics