Skip to main content

Phosphoproteomics Analysis of Plant Root Tissue

  • Protocol
  • First Online:
Plant Phosphoproteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2358))

Abstract

Plants absorb water and nutrients from soil through roots and transmit these resources through the xylem to the shoot. Roots therefore participate in information and material transduction as well as signal communication with the shoot. The importance of reversible protein phosphorylation in the regulation of plant growth and development has been amply demonstrated through decades of research. Here, we present a simple mass spectrometry-based shotgun phosphoproteomics protocol for Arabidopsis root tissue. Through this method, we can profile the Arabidopsis root phosphoproteome and construct signal networks of key proteins to better understand their roles in plant growth and development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moffett AS, Shukla D (2018) Using molecular simulation to explore the nanoscale dynamics of the plant kinome. Biochem J 475(5):905–921. https://doi.org/10.1042/BCJ20170299

    Article  CAS  PubMed  Google Scholar 

  2. Schweighofer A, Meskiene I (2015) Phosphatases in plants. Methods Mol Biol 1306:25–46. https://doi.org/10.1007/978-1-4939-2648-0_2

    Article  CAS  PubMed  Google Scholar 

  3. Liu KH, Niu Y, Konishi M et al (2017) Discovery of nitrate-CPK-NLP signalling in central nutrient-growth networks. Nature 545(7654):311–316. https://doi.org/10.1038/nature22077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang Q, Qin G, Cao M et al (2020) A phosphorylation-based switch controls TAA1-mediated auxin biosynthesis in plants. Nat Commun 11(1):679. https://doi.org/10.1038/s41467-020-14395-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vialaret J, Di Pietro M, Hem S et al (2014) Phosphorylation dynamics of membrane proteins from Arabidopsis roots submitted to salt stress. Proteomics 14(9):1058–1070. https://doi.org/10.1002/pmic.201300443

    Article  CAS  PubMed  Google Scholar 

  6. Takahashi F, Shinozaki K (2019) Long-distance signaling in plant stress response. Curr Opin Plant Biol 47:106–111. https://doi.org/10.1016/j.pbi.2018.10.006

    Article  CAS  PubMed  Google Scholar 

  7. Ota R, Ohkubo Y, Yamashita Y et al (2020) Shoot-to-root mobile CEPD-like 2 integrates shoot nitrogen status to systemically regulate nitrate uptake in Arabidopsis. Nat Commun 11(1):641. https://doi.org/10.1038/s41467-020-14440-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tabata R, Sumida K, Yoshii T et al (2014) Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling. Science 346(6207):343–346. https://doi.org/10.1126/science.1257800

    Article  CAS  PubMed  Google Scholar 

  9. Liu KH, Huang CY, Tsay YF (1999) CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake. Plant Cell 11(5):865–874. https://doi.org/10.1105/tpc.11.5.865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu KH, Tsay YF (2003) Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation. EMBO J 22(5):1005–1013

    Article  CAS  Google Scholar 

  11. Hochholdinger F, Marcon C, Baldauf JA et al (2018) Proteomics of maize root development. Front Plant Sci 9:143. https://doi.org/10.3389/fpls.2018.00143

    Article  PubMed  PubMed Central  Google Scholar 

  12. Millar AH, Heazlewood JL, Giglione C et al (2019) The scope, functions, and dynamics of posttranslational protein modifications. Annu Rev Plant Biol 70:119–151. https://doi.org/10.1146/annurev-arplant-050718-100211

    Article  CAS  PubMed  Google Scholar 

  13. Rappsilber J, Ishihama Y, Mann M (2003) Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem 75(3):663–670

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhu, Z., Yang, S., Li, S., Yang, X., Krall, L. (2021). Phosphoproteomics Analysis of Plant Root Tissue. In: Wu, X.N. (eds) Plant Phosphoproteomics. Methods in Molecular Biology, vol 2358. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1625-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1625-3_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1624-6

  • Online ISBN: 978-1-0716-1625-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics