Skip to main content

Kinase Activity Assay Using Unspecific Substrate or Specific Synthetic Peptides

  • Protocol
  • First Online:
Plant Phosphoproteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2358))

  • 967 Accesses

Abstract

Phosphorylation of a substrate by protein kinases leads to the activation or inactivation of numerous signaling pathways and metabolic processes. The assessment of kinase activity by using a specific or generic substrate plays a crucial role in characterization of kinase specificity and activity. Here we describe a protocol using either a synthetic peptide as a specific substrate or using myelin basic protein (MBP) as a generic substrate for the kinase activity assay. The kinase of interest is fused with a GFP (green fluorescent protein) tag and can be purified by GFP magnetic beads. Kinase–GFP complexes are then incubated with ATP, substrate, and coordinated reaction reagent for the kinase reaction. The assay is then quantified through mass spectrometry or enzymatic luminescence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zulawski M, Schulze G, Braginets R, Hartmann S, Schulze WX (2014) The Arabidopsis Kinome: phylogeny and evolutionary insights into functional diversification. BMC Genomics 15:548

    Article  Google Scholar 

  2. van Wijk KJ, Friso G, Walther D, Schulze WX (2014) Meta-analysis of Arabidopsis thaliana phospho-proteomics data reveals compartmentalization of phosphorylation motifs. Plant Cell 26(6):2367–2389

    Article  Google Scholar 

  3. Ardito F, Giuliani M, Perrone D, Troiano G, Lo Muzio L (2017) The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review). Int J Mol Med 40(2):271–280

    Article  CAS  Google Scholar 

  4. Trentini DB, Fuhrmann J, Mechtler K, Clausen T (2014) Chasing phosphoarginine proteins: development of a selective enrichment method using a phosphatase trap. Mol Cell Proteomics 13(8):1953–1964

    Article  CAS  Google Scholar 

  5. Elkhadragy L, Long W (2019) A radioactive in vitro ERK3 kinase assay. Bio Protoc 9(16):e3332

    Article  CAS  Google Scholar 

  6. Kim HS, Bian X, Lee CJ, Kim SE, Park SC, Xie Y, Guo X, Kwak SS (2019) IbMPK3/IbMPK6-mediated IbSPF1 phosphorylation promotes tolerance to bacterial pathogen in sweetpotato. Plant Cell Rep 38(11):1403–1415

    Article  CAS  Google Scholar 

  7. Lee HY, Yoon GM (2017) Kinase assay for CONSTITUTIVE TRIPLE RESPONSE 1 (CTR1) in Arabidopsis thaliana. Methods Mol Biol 1573:133–140

    Article  CAS  Google Scholar 

  8. Tan S, Abas M, Verstraeten I, Glanc M, Molnar G, Hajny J, Lasak P, Petrik I, Russinova E, Petrasek J, Novak O, Pospisil J, Friml J (2020) Salicylic acid targets protein phosphatase 2A to attenuate growth in plants. Curr Biol 30(3):381–395.e388

    Article  CAS  Google Scholar 

  9. Kersten B, Agrawal GK, Iwahashi H, Rakwal R (2006) Plant phosphoproteomics: a long road ahead. Proteomics 6(20):5517–5528

    Article  CAS  Google Scholar 

  10. Willmann R, Haischer DJ, Gust AA (2014) Analysis of MAPK activities using MAPK-specific antibodies. Methods Mol Biol 1171:27–37

    Article  Google Scholar 

  11. Wurzinger B, Mair A, Fischer-Schrader K, Nukarinen E, Roustan V, Weckwerth W, Teige M (2017) Redox state-dependent modulation of plant SnRK1 kinase activity differs from AMPK regulation in animals. FEBS Lett 591(21):3625–3636

    Article  CAS  Google Scholar 

  12. Zhang M, Su J, Zhang Y, Xu J, Zhang S (2018) Conveying endogenous and exogenous signals: MAPK cascades in plant growth and defense. Curr Opin Plant Biol 45(Pt A):1–10

    PubMed  Google Scholar 

  13. Hemmila II (1999) LANCEtrade mark: homogeneous assay platform for HTS. J Biomol Screen 4(6):303–308

    Article  CAS  Google Scholar 

  14. Mathis G (1995) Probing molecular interactions with homogeneous techniques based on rare earth cryptates and fluorescence energy transfer. Clin Chem 41(9):1391–1397

    Article  CAS  Google Scholar 

  15. Seethala R, Menzel R (1997) A homogeneous, fluorescence polarization assay for src-family tyrosine kinases. Anal Biochem 253(2):210–218

    Article  CAS  Google Scholar 

  16. Wu JJ (2002) Comparison of SPA, FRET, and FP for kinase assays. Methods Mol Biol 190:65–85

    CAS  PubMed  Google Scholar 

  17. Jia Y, Gu XJ, Brinker A, Warmuth M (2008) Measuring the tyrosine kinase activity: a review of biochemical and cellular assay technologies. Expert Opin Drug Discovery 3(8):959–978

    Article  CAS  Google Scholar 

  18. Gronborg M, Kristiansen TZ, Stensballe A, Andersen JS, Ohara O, Mann M, Jensen ON, Pandey A (2002) A mass spectrometry-based proteomic approach for identification of serine/threonine-phosphorylated proteins by enrichment with phospho-specific antibodies: identification of a novel protein, Frigg, as a protein kinase A substrate. Mol Cell Proteomics 1(7):517–527

    Article  CAS  Google Scholar 

  19. Peck SC (2006) Analysis of protein phosphorylation: methods and strategies for studying kinases and substrates. Plant J 45(4):512–522

    Article  CAS  Google Scholar 

  20. Brumlik MJ, Wei S, Finstad K, Nesbit J, Hyman LE, Lacey M, Burow ME, Curiel TJ (2004) Identification of a novel mitogen-activated protein kinase in Toxoplasma gondii. Int J Parasitol 34(11):1245–1254

    Article  CAS  Google Scholar 

  21. Ghosh AS, Ray D, Dutta S, Raha S (2010) EhMAPK, the mitogen-activated protein kinase from Entamoeba histolytica is associated with cell survival. PLoS One 5(10):e13291

    Article  Google Scholar 

  22. Jiang L, Anderson JC, Gonzalez Besteiro MA, Peck SC (2017) Phosphorylation of Arabidopsis MAP kinase phosphatase 1 (MKP1) is required for PAMP responses and resistance against bacteria. Plant Physiol 175(4):1839–1852

    Article  CAS  Google Scholar 

  23. Patel A, Chojnowski AN, Gaskill K, De Martini W, Goldberg RL, Siekierka JJ (2011) The role of a Brugia malayi p38 MAP kinase ortholog (Bm-MPK1) in parasite anti-oxidative stress responses. Mol Biochem Parasitol 176(2):90–97

    Article  CAS  Google Scholar 

  24. Zeng N, D’Souza RF, Figueiredo VC, Markworth JF, Roberts LA, Peake JM, Mitchell CJ, Cameron-Smith D (2017) Acute resistance exercise induces Sestrin2 phosphorylation and p62 dephosphorylation in human skeletal muscle. Physiol Rep 5(24)

    Google Scholar 

  25. Zhang J, Gao J, Zhu Z, Song Y, Wang X, Wang X, Zhou X (2020) MKK4/MKK5-MPK1/MPK2 cascade mediates SA-activated leaf senescence via phosphorylation of NPR1 in Arabidopsis. Plant Mol Biol 102(4–5):463–475

    Article  CAS  Google Scholar 

  26. Lu SX, Hrabak EM (2013) The myristoylated amino-terminus of an Arabidopsis calcium-dependent protein kinase mediates plasma membrane localization. Plant Mol Biol 82(3):267–278

    Article  CAS  Google Scholar 

  27. Minkoff BB, Makino SI, Haruta M, Beebe ET, Wrobel RL, Fox BG, Sussman MR (2017) A cell-free method for expressing and reconstituting membrane proteins enables functional characterization of the plant receptor-like protein kinase FERONIA. J Biol Chem 292(14):5932–5942

    Article  CAS  Google Scholar 

  28. Wu XN, Chu L, Xi L, Pertl-Obermeyer H, Li Z, Sklodowski K, Sanchez-Rodriguez C, Obermeyer G, Schulze WX (2019) Sucrose-induced receptor kinase 1 is modulated by an interacting kinase with short extracellular domain. Mol Cell Proteomics 18(8):1556–1571

    Article  CAS  Google Scholar 

  29. Wu XN, Sanchez Rodriguez C, Pertl-Obermeyer H, Obermeyer G, Schulze WX (2013) Sucrose-induced receptor kinase SIRK1 regulates a plasma membrane aquaporin in Arabidopsis. Mol Cell Proteomics 12(10):2856–2873

    Article  CAS  Google Scholar 

  30. Rappsilber J, Ishihama Y, Mann M (2003) Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem 75(3):663–670

    Article  CAS  Google Scholar 

  31. ADP-Glo™ kinase assay technical manual (2020) Promega Corporation. https://www.promega.de/-/media/files/resources/protocols/technical-manuals/0/adp-glo-kinase-assay-protocol.pdf?la=en. Accessed 3 Aug 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Na Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, J., Yang, X., Xi, L., Wu, X.N. (2021). Kinase Activity Assay Using Unspecific Substrate or Specific Synthetic Peptides. In: Wu, X.N. (eds) Plant Phosphoproteomics. Methods in Molecular Biology, vol 2358. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1625-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1625-3_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1624-6

  • Online ISBN: 978-1-0716-1625-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics