Skip to main content

PhosPhAt 4.0: An Updated Arabidopsis Database for Searching Phosphorylation Sites and Kinase-Target Interactions

  • Protocol
  • First Online:
Plant Phosphoproteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2358))

Abstract

The PhosPhAt 4.0 database contains information on Arabidopsis phosphorylation sites identified by mass spectrometry in large-scale experiments from different research groups. So far PhosPhAt 4.0 has been one of the most significant large-scale data resources for plant phosphorylation studies. Functionalities of the web application, besides display of phosphorylation sites, include phosphorylation site prediction and kinase–target relationships retrieval. Here, we present an overview and user instructions for the PhosPhAt 4.0 database, with strong emphasis on recent renewals regarding protein annotation by SUBA4.0 and Mapman4, and additional phosphorylation site information imported from other databases, such as UniProt. Here, we provide a user guide for the retrieval of phosphorylation motifs from the kinase–target database and how to visualize these results. The improvements incorporated into the PhosPhAt 4.0 database have produced much more functionality and user flexibility for phosphoproteomic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schulze WX, Yao Q, Xu D (2015) Databases for plant phosphoproteomics. Methods Mol Biol 1306:207–216

    Article  CAS  PubMed  Google Scholar 

  2. Yao Q, Xu D (2017) Bioinformatics analysis of protein phosphorylation in plant systems biology using P3DB. Methods Mol Biol 1558:127–138

    Article  CAS  PubMed  Google Scholar 

  3. Humphrey SJ, James DE, Mann M (2015) Protein phosphorylation: a major switch mechanism for metabolic regulation. Trends Endocrinol Metab 26(12):676–687

    Article  CAS  PubMed  Google Scholar 

  4. Champion A, Kreis M, Mockaitis K, Picaud A, Henry Y (2004) Arabidopsis kinome: after the casting. Funct Integr Genomics 4(3):163–187

    Article  CAS  PubMed  Google Scholar 

  5. Wu XN, Xi L, Pertl-Obermeyer H, Li Z, Chu LC, Schulze WX (2017) Highly efficient single-step enrichment of low abundance phosphopeptides from plant membrane preparations. Front Plant Sci 8:1673

    Article  PubMed  PubMed Central  Google Scholar 

  6. Schweighofer A, Meskiene I (2015) Phosphatases in plants. Methods Mol Biol 1306:25–46

    Article  CAS  PubMed  Google Scholar 

  7. Liu Q, Wang Q, Deng W, Wang X, Piao M, Cai D, Li Y, Barshop WD, Yu X, Zhou T, Liu B, Oka Y, Wohlschlegel J, Zuo Z, Lin C (2017) Molecular basis for blue light-dependent phosphorylation of Arabidopsis cryptochrome 2. Nat Commun 8:15234

    Article  PubMed  PubMed Central  Google Scholar 

  8. Perraki A, DeFalco TA, Derbyshire P, Avila J, Sere D, Sklenar J, Qi X, Stransfeld L, Schwessinger B, Kadota Y, Macho AP, Jiang S, Couto D, Torii KU, Menke FLH, Zipfel C (2018) Phosphocode-dependent functional dichotomy of a common co-receptor in plant signalling. Nature 561(7722):248–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ding Y, Jia Y, Shi Y, Zhang X, Song C, Gong Z, Yang S (2018) OST1-mediated BTF3L phosphorylation positively regulates CBFs during plant cold responses. EMBO J 37(8)

    Google Scholar 

  10. Barbosa ICR, Hammes UZ, Schwechheimer C (2018) Activation and polarity control of PIN-FORMED auxin transporters by phosphorylation. Trends Plant Sci 23(6):523–538

    Article  CAS  PubMed  Google Scholar 

  11. Li Z, Wang Y, Huang J, Ahsan N, Biener G, Paprocki J, Thelen JJ, Raicu V, Zhao D (2017) Two SERK receptor-like kinases interact with EMS1 to control anther cell fate determination. Plant Physiol 173(1):326–337

    Article  CAS  PubMed  Google Scholar 

  12. Hu C, Zhu Y, Cui Y, Cheng K, Liang W, Wei Z, Zhu M, Yin H, Zeng L, Xiao Y, Lv M, Yi J, Hou S, He K, Li J, Gou X (2018) A group of receptor kinases are essential for CLAVATA signalling to maintain stem cell homeostasis. Nat Plants 4(4):205–211

    Article  CAS  PubMed  Google Scholar 

  13. Luo X, Wu W, Liang Y, Xu N, Wang Z, Zou H, Liu J (2020) Tyrosine phosphorylation of the lectin receptor-like kinase LORE regulates plant immunity. EMBO J 39(4):e102856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sugano S, Maeda S, Hayashi N, Kajiwara H, Inoue H, Jiang CJ, Takatsuji H, Mori M (2018) Tyrosine phosphorylation of a receptor-like cytoplasmic kinase, BSR1, plays a crucial role in resistance to multiple pathogens in rice. Plant J 96(6):1137–1147

    Article  CAS  PubMed  Google Scholar 

  15. Eisenach C, Baetz U, Huck NV, Zhang J, De Angeli A, Beckers GJM, Martinoia E (2017) ABA-induced stomatal closure involves ALMT4, a phosphorylation-dependent vacuolar anion channel of Arabidopsis. Plant Cell 29(10):2552–2569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Trotta A, Bajwa AA, Mancini I, Paakkarinen V, Pribil M, Aro EM (2019) The role of phosphorylation dynamics of CURVATURE THYLAKOID 1B in plant thylakoid membranes. Plant Physiol 181(4):1615–1631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chan A, Carianopol C, Tsai AY, Varatharajah K, Chiu RS, Gazzarrini S (2017) SnRK1 phosphorylation of FUSCA3 positively regulates embryogenesis, seed yield, and plant growth at high temperature in Arabidopsis. J Exp Bot 68(15):4219–4231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Erwig J, Ghareeb H, Kopischke M, Hacke R, Matei A, Petutschnig E, Lipka V (2017) Chitin-induced and CHITIN ELICITOR RECEPTOR KINASE1 (CERK1) phosphorylation-dependent endocytosis of Arabidopsis thaliana LYSIN MOTIF-CONTAINING RECEPTOR-LIKE KINASE5 (LYK5). New Phytol 215(1):382–396

    Article  CAS  PubMed  Google Scholar 

  19. Kimura S, Hunter K, Vaahtera L, Tran HC, Citterico M, Vaattovaara A, Rokka A, Stolze SC, Harzen A, Meissner L, Wilkens MMT, Hamann T, Toyota M, Nakagami H, Wrzaczek M (2020) CRK2 and C-terminal phosphorylation of NADPH oxidase RBOHD regulate reactive oxygen species production in Arabidopsis. Plant Cell 32(4):1063–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Van Leene J, Han C, Gadeyne A, Eeckhout D, Matthijs C, Cannoot B, De Winne N, Persiau G, Van De Slijke E, Van de Cotte B, Stes E, Van Bel M, Storme V, Impens F, Gevaert K, Vandepoele K, De Smet I, De Jaeger G (2019) Capturing the phosphorylation and protein interaction landscape of the plant TOR kinase. Nat Plants 5(3):316–327

    Article  PubMed  Google Scholar 

  21. van Wijk KJ, Friso G, Walther D, Schulze WX (2014) Meta-analysis of Arabidopsis thaliana phospho-proteomics data reveals compartmentalization of phosphorylation motifs. Plant Cell 26(6):2367–2389

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhang T, Schneider JD, Lin C, Geng S, Ma T, Lawrence SR, Dufresne CP, Harmon AC, Chen S (2019) MPK4 phosphorylation dynamics and interacting proteins in plant immunity. J Proteome Res 18(3):826–840

    Article  CAS  PubMed  Google Scholar 

  23. Wong MM, Bhaskara GB, Wen TN, Lin WD, Nguyen TT, Chong GL, Verslues PE (2019) Phosphoproteomics of Arabidopsis highly ABA-Induced1 identifies AT-hook-Like10 phosphorylation required for stress growth regulation. Proc Natl Acad Sci U S A 116(6):2354–2363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Waterworth WM, Wilson M, Wang D, Nuhse T, Warward S, Selley J, West CE (2019) Phosphoproteomic analysis reveals plant DNA damage signalling pathways with a functional role for histone H2AX phosphorylation in plant growth under genotoxic stress. Plant J 100(5):1007–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cheng H, Deng W, Wang Y, Ren J, Liu Z, Xue Y (2014) dbPPT: a comprehensive database of protein phosphorylation in plants. Database 2014:bau121

    Article  PubMed  PubMed Central  Google Scholar 

  26. Willems P, Horne A, Van Parys T, Goormachtig S, De Smet I, Botzki A, Van Breusegem F, Gevaert K (2019) The plant PTM viewer, a central resource for exploring plant protein modifications. Plant J 99(4):752–762

    Article  CAS  PubMed  Google Scholar 

  27. Heazlewood JL, Durek P, Hummel J, Selbig J, Weckwerth W, Walther D, Schulze WX (2008) PhosPhAt: a database of phosphorylation sites in Arabidopsis thaliana and a plant-specific phosphorylation site predictor. Nucleic Acids Res 36(Database issue):D1015–D1021

    CAS  PubMed  Google Scholar 

  28. Durek P, Schmidt R, Heazlewood JL, Jones A, MacLean D, Nagel A, Kersten B, Schulze WX (2010) PhosPhAt: the Arabidopsis thaliana phosphorylation site database. An update. Nucleic Acids Res 38(Database issue):D828–D834

    Article  CAS  PubMed  Google Scholar 

  29. Zulawski M, Braginets R, Schulze WX (2013) PhosPhAt goes kinases—searchable protein kinase target information in the plant phosphorylation site database PhosPhAt. Nucleic Acids Res 41(Database issue):D1176–D1184

    CAS  PubMed  Google Scholar 

  30. Ross KE, Huang H, Ren J, Arighi CN, Li G, Tudor CO, Lv M, Lee JY, Chen SC, Vijay-Shanker K, Wu CH (2017) iPTMnet: integrative bioinformatics for studying PTM networks. Methods Mol Biol 1558:333–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schonberg A, Bergner E, Helm S, Agne B, Dunschede B, Schunemann D, Schutkowski M, Baginsky S (2014) The peptide microarray “ChloroPhos1.0” identifies new phosphorylation targets of plastid casein kinase II (pCKII) in Arabidopsis thaliana. PLoS One 9(10):e108344

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dai X, Li J, Liu T, Zhao PX (2016) HRGRN: a graph search-empowered integrative database of Arabidopsis signaling transduction, metabolism and gene regulation networks. Plant Cell Physiol 57(1):e12

    Article  PubMed  Google Scholar 

  33. Zhang Y, Shi Y, Zhao L, Wei F, Feng Z, Feng H (2019) Phosphoproteomics profiling of cotton (Gossypium hirsutum L.) roots in response to verticillium dahliae inoculation. ACS Omega 4(19):18434–18443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Haj Ahmad F, Wu XN, Stintzi A, Schaller A, Schulze WX (2019) The systemin signaling cascade as derived from time course analyses of the systemin-responsive phosphoproteome. Mol Cell Proteomics 18(8):1526–1542

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gao J, Zhang S, He WD, Shao XH, Li CY, Wei YR, Deng GM, Kuang RB, Hu CH, Yi GJ, Yang QS (2017) Comparative phosphoproteomics reveals an important role of MKK2 in Banana (Musa spp.) cold signal network. Sci Rep 7:40852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pi E, Qu L, Hu J, Huang Y, Qiu L, Lu H, Jiang B, Liu C, Peng T, Zhao Y, Wang H, Tsai SN, Ngai S, Du L (2016) Mechanisms of soybean roots’ tolerances to salinity revealed by proteomic and phosphoproteomic comparisons between two cultivars. Mol Cell Proteomics 15(1):266–288

    Article  CAS  PubMed  Google Scholar 

  37. Verkest A, Byzova M, Martens C, Willems P, Verwulgen T, Slabbinck B, Rombaut D, Van de Velde J, Vandepoele K, Standaert E, Peeters M, Van Lijsebettens M, Van Breusegem F, De Block M (2015) Selection for improved energy use efficiency and drought tolerance in canola results in distinct transcriptome and epigenome changes. Plant Physiol 168(4):1338–1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schwacke R, Ponce-Soto GY, Krause K, Bolger AM, Arsova B, Hallab A, Gruden K, Stitt M, Bolger ME, Usadel B (2019) MapMan4: a refined protein classification and annotation framework applicable to multi-omics data analysis. Mol Plant 12(6):879–892

    Article  CAS  PubMed  Google Scholar 

  39. Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P, Selbig J, Muller LA, Rhee SY, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37(6):914–939

    Article  CAS  PubMed  Google Scholar 

  40. Reiland S, Messerli G, Baerenfaller K, Gerrits B, Endler A, Grossmann J, Gruissem W, Baginsky S (2009) Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks. Plant Physiol 150(2):889–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Szick K, Springer M, Bailey-Serres J (1998) Evolutionary analyses of the 12-kDa acidic ribosomal P-proteins reveal a distinct protein of higher plant ribosomes. Proc Natl Acad Sci U S A 95(5):2378–2383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Turkina MV, Klang Arstrand H, Vener AV (2011) Differential phosphorylation of ribosomal proteins in Arabidopsis thaliana plants during day and night. PLoS One 6(12):e29307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rodiger A, Agne B, Baerenfaller K, Baginsky S (2014) Arabidopsis proteomics: a simple and standardizable workflow for quantitative proteome characterization. Methods Mol Biol 1072:275–288

    Article  PubMed  Google Scholar 

  44. Mergner J, Frejno M, List M, Papacek M, Chen X, Chaudhary A, Samaras P, Richter S, Shikata H, Messerer M, Lang D, Altmann S, Cyprys P, Zolg DP, Mathieson T, Bantscheff M, Hazarika RR, Schmidt T, Dawid C, Dunkel A, Hofmann T, Sprunck S, Falter-Braun P, Johannes F, Mayer KFX, Jürgens G, Wilhelm M, Baumbach J, Grill E, Schneitz K, Schwechheimer C, Kuster B (2020) Mass-spectrometry-based draft of the Arabidopsis proteome. Nature 579(7799):409–414

    Article  CAS  PubMed  Google Scholar 

  45. Christian JO, Braginets R, Schulze WX, Walther D (2012) Characterization and prediction of protein phosphorylation hotspots in Arabidopsis thaliana. Front Plant Sci 3:207

    Article  PubMed  PubMed Central  Google Scholar 

  46. Schwartz D, Gygi SP (2005) An iterative statistical approach to the identification of protein phosphorylation motifs from large-scale data sets. Nat Biotechnol 23(11):1391–1398

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Xi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Xi, L., Zhang, Z., Schulze, W.X. (2021). PhosPhAt 4.0: An Updated Arabidopsis Database for Searching Phosphorylation Sites and Kinase-Target Interactions. In: Wu, X.N. (eds) Plant Phosphoproteomics. Methods in Molecular Biology, vol 2358. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1625-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1625-3_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1624-6

  • Online ISBN: 978-1-0716-1625-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics