Skip to main content

Plant Phosphopeptide Identification and Label-Free Quantification by MaxQuant and Proteome Discoverer Software

  • Protocol
  • First Online:
Plant Phosphoproteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2358))

Abstract

Both the phosphorylation and dephosphorylation of plant proteins is involved in multiple biological processes, especially in regard to signal transduction. The identification of phosphopeptides from MS (mass spectrometry)-based methods and their subsequent quantification play an important role in plant phosphoproteomics analysis. Phosphopeptide(s) identification and label-free quantification can determine dynamic changes of phosphorylation events in plants. Both MaxQuant and Proteome Discoverer are professional software tools used to identify and quantify large-scale MS-based phosphoproteomic data. This chapter gives a detailed workflow of MaxQuant and Proteome Discoverer software to analyze large amounts of phosphoproteomic-related MS data for the identification and quantification of label-free plant phosphopeptides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 08 December 2021

    In the original version of this book, the title of chapter 13 was published with a typographical error. It has now been rectified in the revised version of this book.

References

  1. Hubbard MJ, Cohen P (1993) On target with a new mechanism for the regulation of protein phosphorylation. Trends Biochem Sci 18(5):172–177

    Article  CAS  Google Scholar 

  2. Hunter T (1995) Protein kinases and phosphatases: the Yin and Yang of protein phosphorylation and signaling. Cell 80(2):225–236

    Article  CAS  Google Scholar 

  3. Lee SC, Lan WZ, Kim BG et al (2007) A protein phosphorylation/dephosphorylation network regulates a plant potassium channel. Proc Natl Acad Sci U S A 104(40):15959–15964

    Article  CAS  Google Scholar 

  4. Chen WG, White FM (2004) Proteomic analysis of cellular signaling. Expert Rev Proteomics 1(3):343–354

    Article  CAS  Google Scholar 

  5. Di Costanzo A, Festa L, Duverger O et al (2009) Homeodomain protein Dlx3 induces phosphorylation-dependent p63 degradation. Cell Cycle 8(8):1185–1195

    Article  Google Scholar 

  6. Yang W, Zhang W, Wang X (2017) Post-translational control of ABA signalling: the roles of protein phosphorylation and ubiquitination. Plant Biotechnol J 15(1):4–14. https://doi.org/10.1111/pbi.12652

    Article  CAS  PubMed  Google Scholar 

  7. Saier MH, Chauvaux S, Deutscher J et al (1995) Protein phosphorylation and regulation of carbon metabolism in gram-negative versus gram-positive bacteria. Trends Biochem Sci 20(7):267–271

    Article  CAS  Google Scholar 

  8. Wojtkiewicz M, Wiederin J, Ciborowski P et al (2013) Comparison of proteome discoverer and PEAKS studio for phosphoproteome analysis. J Biomol Tech 24(Suppl):S62

    PubMed Central  Google Scholar 

  9. Searle BC (2010) Scaffold: a bioinformatic tool for validating MS/MS-based proteomic studies. Proteomics 10(6):1265–1269

    Article  CAS  Google Scholar 

  10. Cox J, Neuhauser N, Michalski A et al (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10(4):1794–1805. https://doi.org/10.1021/pr101065j

    Article  CAS  PubMed  Google Scholar 

  11. Maclean B, Tomazela DM, Shulman N et al (2010) Skyline. Bioinformatics 26(7):966–968

    Article  CAS  Google Scholar 

  12. Peffers M, Jones AR, McCabe A et al (2017) Neopeptide analyser: a software tool for neopeptide discovery in proteomics data. Wellcome Open Res 2:24. https://doi.org/10.12688/wellcomeopenres.11275.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Al Shweiki MR, Monchgesang S, Majovsky P et al (2017) Assessment of label-free quantification in discovery proteomics and impact of technological factors and natural variability of protein abundance. J Proteome Res 16(4):1410–1424. https://doi.org/10.1021/acs.jproteome.6b00645

    Article  CAS  PubMed  Google Scholar 

  14. Cox J, Matic I, Hilger M et al (2009) A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nat Protoc 4(5):698–705. https://doi.org/10.1038/nprot.2009.36

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Li, S., Zan, H., Zhu, Z., Lu, D., Krall, L. (2021). Plant Phosphopeptide Identification and Label-Free Quantification by MaxQuant and Proteome Discoverer Software. In: Wu, X.N. (eds) Plant Phosphoproteomics. Methods in Molecular Biology, vol 2358. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1625-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1625-3_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1624-6

  • Online ISBN: 978-1-0716-1625-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics