Skip to main content

Toward the Design of Potato Tolerant to Abiotic Stress

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2354))

Abstract

Potato is a major global crop that has an important role to play in food security, reducing poverty and improving human nutrition. Productivity in potato however is limited in many environments by its sensitivity to abiotic stresses such as elevated temperature, drought, frost, and salinity. In this chapter we focus on the effects of elevated temperature on potato yields as high temperature is the most important uncontrollable factor affecting growth and yield of potato. We describe some of the physiological impacts of elevated temperature and review recent findings about response mechanisms. We describe genetic approaches that could be used to identify allelic variants of genes that may be useful to breed for increased climate resilience, an approach that could be deployed with recent advances in potato breeding.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Birch PR, Bryan G, Fenton B et al (2012) Crops that feed the world 8: potato: are the trends of increased global production sustainable? Food Security 4:477–508

    Article  Google Scholar 

  2. Levy D, Veilleux RE (2007) Adaptation of potato to high temperatures and salinity—a review. Am J Potato Res 84:487–506

    Article  Google Scholar 

  3. Hijmans RJ (2003) The effect of climate change on global potato production. Am J Potato Res 80:271–279

    Article  Google Scholar 

  4. Vega SE, Bamberg JB (1995) Screening the US potato collection for frost hardiness. Am Potato J 72:13–21

    Article  Google Scholar 

  5. Hawkes JG (1992) History of the potato. In: Harris PM (ed) The potato crop: the scientific basis for improvement, 2nd edn. Springer, Dordrecht

    Google Scholar 

  6. Van Dam J, Kooman PL, Struik PC (1996) Effects of temperature and photoperiod on early growth and final number of tuber in potato (Solanum tuberosum L.). Potato Res 39:51–62

    Article  Google Scholar 

  7. Change IC (2014) Mitigation of climate change. In: Contribution of working group III to the fifth assessment report of the Intergovernmental Panel on Climate Change, p 1454

    Google Scholar 

  8. Yeh CH, Kaplinsky NJ, Hu C et al (2012) Some like it hot, some like it warm: phenotyping to explore thermotolerance diversity. Plant Sci 195:10–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Parent B, Tardieu F (2012) Temperature responses of developmental processes have not been affected by breeding in different ecological areas for 17 crop species. New Phytol 194:760–774

    Article  PubMed  Google Scholar 

  10. Ahuja I, de Vos RCH, Bones AM et al (2010) Plant molecular stress responses face climate change. Trends Plant Sci 15:664–674

    Article  CAS  PubMed  Google Scholar 

  11. Mitler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37:118–125

    Article  CAS  Google Scholar 

  12. Umezawa T, Fujita M, Fujita Y et al (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol 17:113–122

    Article  CAS  PubMed  Google Scholar 

  13. Larkindale J, Vierling E (2008) Core genome responses involved in acclimation to high temperature. Plant Physiol 146:748–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jamil A, Riaz S, Ashraf M et al (2011) Gene expression profiling of plants under salt stress. Crit Rev Plant Sci 30:435–458

    Article  Google Scholar 

  16. De Block M, Verduyn C, De Brouwer D et al (2005) Poly (ADP-ribose) polymerase in plants affects energy homeostasis, cell death and stress tolerance. Plant J 41:95–106

    Article  PubMed  CAS  Google Scholar 

  17. Castiglioni P, Warner D, Bensen RJ et al (2008) Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiol 147:446–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li H, Payne WA, Michels GJ et al (2008) Reducing plant abiotic and biotic stress: drought and attacks of greenbugs, corn leaf aphids and virus disease in dryland sorghum. Environ Exp Bot 63:305–316

    Article  Google Scholar 

  19. Skirycz A, Vandenbroucke K, Clauw P et al (2011) Survival and growth of Arabidopsis plants given limited water are not equal. Nat Biotechnol 29:212–214

    Article  CAS  PubMed  Google Scholar 

  20. Cramer GR, Urano K, Delrot S et al (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163

    PubMed  PubMed Central  Google Scholar 

  21. Ewing EE (1981) Heat stress and the tuberization stimulus. Am Potato J 58:31–49

    Article  Google Scholar 

  22. Navarro C, Abelenda JA, Cuéllar C et al (2011) Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature 478:119–122

    Article  CAS  PubMed  Google Scholar 

  23. Morris WL, Hancock RD, Ducreux LJM et al (2014) Day length dependent restructuring of the leaf transcriptome and metabolome in potato genotypes with contrasting tuberization phenotypes. Plant Cell Environ 37:1351–1363

    Article  CAS  PubMed  Google Scholar 

  24. Lehretz GG, Sonnewald S, Hornyik C et al (2019) Post-transcriptional regulation of FLOWERING LOCUS T modulates heat-dependent source-sink development in potato. Curr Biol 29:1614–1624

    Article  CAS  PubMed  Google Scholar 

  25. Legris M, Klose C, Burgie ES et al (2016) Phytochrome B integrates light and temperature signals in Arabidopsis. Science 354:897–900

    Article  CAS  PubMed  Google Scholar 

  26. Jung JH, Domijan M, Klose C et al (2016) Phytochromes function as thermosensors in Arabidopsis. Science 354:886–889

    Article  CAS  PubMed  Google Scholar 

  27. Legris M, Nieto C, Sellaro R et al (2017) Perception and signalling of light and temperature cues in plants. Plant J 90:683–697

    Article  CAS  PubMed  Google Scholar 

  28. Wolf S, Marani A, Rudich J (1991) Effect of temperature on carbohydrate metabolism in potato plants. J Exp Bot 42:619–625

    Article  CAS  Google Scholar 

  29. Hancock RD, Morris WL, Ducreux LJM et al (2014) Physiological, biochemical and molecular responses of the potato (Solanum tuberosum L.) plant to moderately elevated temperature. Plant Cell Environ 37:439–450

    Article  CAS  PubMed  Google Scholar 

  30. Lafta AH, Lorenzen JH (1995) Effect of high temperature on plant growth and carbohydrate metabolism in potato. Plant Physiol 109:637–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100

    Article  CAS  PubMed  Google Scholar 

  32. Reynolds MP, Ewing EE, Owens TG (1990) Photosynthesis at high temperature in tuber-bearing Solanum species. Plant Physiol 93:791–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Singh A, Siddappa S, Bhardwaj V et al (2015) Expression profiling of potato cultivars with contrasting tuberization at elevated temperature using microarray analysis. Plant Physiol Biochem 97:108–116

    Article  CAS  PubMed  Google Scholar 

  34. Rensink WA, Iobst S, Hart A et al (2005) Gene expression profiling of potato responses to cold, heat, and salt stress. Funct Integr Genomics 5:201–207

    Article  CAS  PubMed  Google Scholar 

  35. Potato Genome Sequencing Consortium, Xu X, Pan S et al (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195

    Article  CAS  Google Scholar 

  36. Pokhilko A, Mas P, Millar AJ (2013) Modelling the widespread effects of TOC1 signalling on the plant circadian clock and its outputs. BMC Syst Biol 7:23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Legnaioli T, Cuevas J, Mas P (2009) TOC1 functions as a molecular switch connecting the circadian clock with plant responses to drought. EMBO J 28:3745–3757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Eriksson ME, Webb AA (2011) Plant cell responses to cold are all about timing. Curr Opin Plant Biol 14:731–737

    Article  PubMed  Google Scholar 

  39. Soy J, Leivar P, González-Schain N et al (2016) Molecular convergence of clock and photosensory pathways through PIF3–TOC1 interaction and co-occupancy of target promoters. Proc Natl Acad Sci U S A 113:4870–4875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Morris WL, Ducreux LJ, Morris J et al (2019) Identification of TIMING OF CAB EXPRESSION 1 as a temperature-sensitive negative regulator of tuberization in potato. J Exp Bot 70:5703–5714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Marinus J, Bodlaender K (1975) Response of some potato varieties to temperature. Potato Res 18:189–204

    Article  Google Scholar 

  42. Mendoza HA, Estrada RN (1979) Breeding potatoes for tolerance to stress: heat and frost. In: Mussel H, Staples RC (eds) Stress physiology in crop plants. John Wiley & Sons, New York

    Google Scholar 

  43. Menzel C (1985) Tuberization in potato at high temperatures: interaction between temperature and irradiance. Ann Bot 55:35–39

    Article  CAS  Google Scholar 

  44. Levy D (1986) Genotypic variation in the response of potatoes (Solanum tuberosum L.) to high ambient temperatures and water deficit. Field Crops Res 15:85–96

    Article  Google Scholar 

  45. Levy D, Kastenbaum E, Itzhak Y (1991) Evaluation of parents and selection for heat tolerance in the early generations of a potato (Solanum tuberosum L.) breeding program. Theor Appl Genet 82:130–136

    Article  CAS  PubMed  Google Scholar 

  46. Midmore D, Prange R (1991) Sources of heat tolerance amongst potato cultivars, breeding lines, and Solanum species. Euphytica 55:235–245

    Article  Google Scholar 

  47. Hetherington SE, Smillie RM, Malagamba P (1983) Heat tolerance and cold tolerance of cultivated potatoes measured by the chlorophyll-fluorescence method. Planta 159:119–124

    Article  CAS  PubMed  Google Scholar 

  48. Reynolds M, Ewing E (1989) Effects of high air and soil temperature stress on growth and tuberization in Solanum tuberosum. Ann Bot 64:241–247

    Article  Google Scholar 

  49. Haynes KG, Haynes F (1983) Stability of high specific gravity genotypes of potatoes under high temperatures. Am Potato J 60:17–26

    Article  Google Scholar 

  50. Morpurgo R, Antunez R, Nacmias B (1985) Response of potato clones to heat stress. Rivista di Ortoflorofrutticoltura Italiana 69:365–373

    Google Scholar 

  51. Veilleux RE, Paz MM, Levy D (1997) Potato germplasm development for warm climates: genetic enhancement of tolerance to heat stress. Euphytica 98:83–92

    Article  Google Scholar 

  52. Paliwal R, Röder MS, Kumar U et al (2012) QTL mapping of terminal heat tolerance in hexaploid wheat (T. aestivum L.). Theor Appl Genet 125:561–575

    Article  PubMed  Google Scholar 

  53. Messmer R, Fracheboud Y, Bänziger M et al (2009) Drought stress and tropical maize: QTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits. Theor Appl Genet 119:913–930

    Article  PubMed  Google Scholar 

  54. Argyris J, Dahal P, Hayashi E et al (2008) Genetic variation for lettuce seed thermoinhibition is associated with temperature-sensitive expression of abscisic acid, gibberellin, and ethylene biosynthesis, metabolism, and response genes. Plant Physiol 148:926–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ewing EE, Wareing PF (1978) Shoot, stolon, and tuber formation on potato (Solanum tuberosum L.) cuttings in response to photoperiod. Plant Physiol 61:348–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Van den Berg J, Struick P, Ewing E (1990) One-leaf cuttings as a model to study second growth in the potato (Solanum tuberosum) plant. Ann Bot 66:273–280

    Article  Google Scholar 

  57. Prashar A, Hornyik C, Young V et al (2014) Construction of a dense SNP map of a highly heterozygous diploid potato population and QTL analysis of tuber shape and eye depth. Theor Appl Genet 127:2159–2171

    Article  PubMed  Google Scholar 

  58. Trapero-Mozos A, Morris WL, Ducreux LJ et al (2018) Engineering heat tolerance in potato by temperature-dependent expression of a specific allele of HEAT-SHOCK COGNATE 70. Plant Biotechnol J 16:197–207

    Article  CAS  PubMed  Google Scholar 

  59. Kloosterman B, Abelenda JA, Carretero-Gomez M et al (2013) Naturally occurring allele diversity for timing of tuberization enables potato tuber cultivation in northern latitudes. Nature 495:246–250

    Article  CAS  PubMed  Google Scholar 

  60. Trapero-Mozos A, Ducreux LJ, Bita CE et al (2018) A reversible light-and genotype-dependent acquired thermotolerance response protects the potato plant from damage due to excessive temperature. Planta 247:1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hilker M, Schwachtje J, Baier M et al (2015) Priming and memory of stress responses in organisms lacking a nervous system. Biol Rev 91:1118–1133

    Article  PubMed  Google Scholar 

  62. Song L, Jiang Y, Zhao H et al (2012) Acquired thermotolerance in plants. Plant Cell Tissue Organ Cult 111:265–276

    Article  CAS  Google Scholar 

  63. Lindhout P, Meijer D, Schotte T et al (2011) Towards F1 hybrid seed potato breeding. Potato Res 54:301–312

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Scottish Government Rural and Environment Science and Analytical Services Division as part of the Strategic Research Programme 2016–2021 and also received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement number 835704, and from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 862858.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Taylor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Campbell, R., Ducreux, L.J.M., Mellado-Ortega, E., Hancock, R.D., Taylor, M.A. (2021). Toward the Design of Potato Tolerant to Abiotic Stress. In: Dobnik, D., Gruden, K., Ramšak, Ž., Coll, A. (eds) Solanum tuberosum. Methods in Molecular Biology, vol 2354. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1609-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1609-3_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1608-6

  • Online ISBN: 978-1-0716-1609-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics