Skip to main content

Characterization of Paramagnetic Iron-Sulfur Clusters Using Electron Paramagnetic Resonance Spectroscopy

  • Protocol
  • First Online:
Fe-S Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2353))

Abstract

Continuous-wave (CW) electron paramagnetic resonance (EPR) spectroscopy is a powerful ally in characterizing the multitude of redox-active iron-sulfur cluster-containing ([Fe-S]) species present in biological samples. The technique detects only those clusters that are paramagnetic—having a nonzero total electron spin (S > 0)—thus, it can discriminate between clusters in different oxidation states. The low-temperature CW-EPR spectrum of an [Fe-S] yields the three magnetic g-values that serve as a fingerprint of its electronic structure. This chapter briefly describes the underlying theory that defines this electronic structure and provides a recipe for the acquisition and analysis of EPR spectra of [Fe-S] proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Palmer G (1975) 1 iron—sulfur proteins. In: Boyer PD (ed) The enzymes. Academic Press, Cambridge, Massachusetts, pp 1–56

    Google Scholar 

  2. Beinert H (2003) Iron-sulfur proteins: properties and functions. Imperial College Press, London, pp 47–72

    Google Scholar 

  3. Beinert H, Kennedy MC, Stout CD (1996) Aconitase as iron-sulfur protein, enzyme, and iron regulatory protein. Chem Rev 96:2335–2373

    Article  CAS  PubMed  Google Scholar 

  4. Evans MCW (1982) Iron-sulfur centers in photosynthetic electron transport. Metal Ions Biol 4:249–284

    CAS  Google Scholar 

  5. Seefeldt LC, Yang Z-Y, Lukoyanov DA et al (2020) Reduction of substrates by Nitrogenases. Chem Rev 120:5082–5106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jasniewski AJ, Lee CC, Ribbe MW et al (2020) Reactivity, mechanism, and assembly of the alternative Nitrogenases. Chem Rev 120:5107–5157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cammack R (1992) Iron—sulfur clusters in enzymes: themes and variations. In: Cammack R (ed) Adv Inorg Chem. Academic Press, Cambridge, Massachusetts, pp 281–322

    Google Scholar 

  8. Hagen WR (2018) EPR spectroscopy of complex biological iron–sulfur systems. J Biol Inorg Chem 23:623–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Abragam A, Bleaney B (1986) In electron paramagnetic resonance of transition ions. Dover Publications, New York

    Google Scholar 

  10. Weil JA, Bolton JR (2007) Electron paramagnetic resonance: elementary theory and practical applications. John Wiley & Sons, Hoboken, New Jersey

    Google Scholar 

  11. Hendrich MP, Debrunner PG (1989) Integer-spin electron-paramagnetic resonance of iron proteins. Biophys J 56:489–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hagen WR (1992) EPR spectroscopy of iron—sulfur proteins. In: Cammack R (ed) Adv Inorg Chem. Academic Press, Cambridge, Massachusetts, pp 165–222

    Google Scholar 

  13. Dunham WR, Palmer G, Sands RH et al (1971) On the structure of the iron-sulfur complex in the two-iron ferredoxins. Biochim Biophys Acta 253:373–384

    Article  CAS  PubMed  Google Scholar 

  14. Sands RH, Dunham WR (1974) Spectroscopic studies on two-iron ferredoxins. Q Rev Biophys 7:443–504

    Article  CAS  PubMed  Google Scholar 

  15. Agar JN, Krebs C, Frazzon J et al (2000) IscU as a scaffold for iron-sulfur cluster biosynthesis: sequential assembly of [2Fe-2S] and [4Fe-4S] clusters in IscU. Biochemistry 39:7856–7862

    Article  CAS  PubMed  Google Scholar 

  16. Chandramouli K, Unciuleac M-C, Naik S et al (2007) Formation and properties of [4Fe-4S] clusters on the IscU scaffold protein. Biochemistry 46:6804–6811

    Article  CAS  PubMed  Google Scholar 

  17. Ribbe M, Tanifuji K, Jasniewski A et al (2020) Nitrogenase M-cluster assembly. American Chemical Society, Washington, p INOR-0100

    Google Scholar 

  18. Dicus MM, Conlan A, Nechushtai R et al (2010) Binding of histidine in the (Cys)3(his)1-coordinated [2Fe−2S] cluster of human mitoNEET. J Am Chem Soc 132:2037–2049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fee JA, Findling KL, Yoshida T et al (1984) Purification and characterization of the Rieske iron-sulfur protein from Thermus Thermophilus - evidence for a 2Fe-2S cluster having non-cysteine ligands. J Biol Chem 259:124–133

    Article  CAS  PubMed  Google Scholar 

  20. Gurbiel RJ, Batie CJ, Sivaraja M et al (1989) Electron-nuclear double resonance spectroscopy of nitrogen-15-enriched phthalate dioxygenase from pseudomonas cepacia proves that two histidines are coordinated to the [2Fe-2S] Rieske-type clusters. Biochemistry 28:4861–4871

    Article  CAS  PubMed  Google Scholar 

  21. Iwasaki T, Kounosu A, Samoilova RI et al (2006) 15N HYSCORE characterization of the fully deprotonated, reduced form of the archaeal Rieske [2Fe-2S] center. J Am Chem Soc 128:2170–2171

    Article  CAS  PubMed  Google Scholar 

  22. Crouse BR, Meyer J, Johnson MK (1995) Spectroscopic evidence for a reduced Fe2S2 cluster with a S = 9/2 ground state in mutant forms of clostridium pasteurianum 2Fe ferredoxin. J Am Chem Soc 117:9612–9613

    Article  CAS  Google Scholar 

  23. Achim C, Golinelli MP, Bominaar EL et al (1996) Mossbauer study of Cys56Ser mutant 2Fe ferredoxin from clostridium pasteurianum: evidence for double exchange in an Fe2S2 (+) cluster. J Am Chem Soc 118:8168–8169

    Article  CAS  Google Scholar 

  24. Priem AH, Klaassen AK, Reijerse EJ et al (2005) EPR analysis of multiple forms of 4Fe-4S (3+) clusters in HiPIPs. J Biol Inorg Chem 10:417–424

    Article  CAS  PubMed  Google Scholar 

  25. Watt GD, Reddy KRN (1994) Formation of an all ferrous Fe4S4 cluster in the iron protein component of Azotobacter vinelandii nitrogenase. J Inorg Biochem 53:281–294

    Article  CAS  Google Scholar 

  26. Pandelia M-E, Lanz ND, Booker SJ et al (2015) Mössbauer spectroscopy of Fe/S proteins. Biochim Biophys Acta 1853:1395–1405

    Article  CAS  PubMed  Google Scholar 

  27. Garcia-Serres R, Clémancey M, Latour J-M et al (2018) Contribution of Mössbauer spectroscopy to the investigation of Fe/S biogenesis. J Biol Inorg Chem 23:635–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Telser J, Emptage MH, Merkle H et al (1986) Oxygen-17 electron nuclear double resonance characterization of substrate binding to the 4-iron-4-sulfur ([4Fe-4S]1+) cluster of reduced active aconitase. J Biol Chem 261:4840–4846

    Article  CAS  PubMed  Google Scholar 

  29. Rao G, Tao L, Suess DLM et al (2018) A [4Fe–4S]-Fe(CO)(CN)-l-cysteine intermediate is the first organometallic precursor in [FeFe] hydrogenase H-cluster bioassembly. Nat Chem 10:555–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tao L, Zhu W, Klinman JP et al (2019) Electron paramagnetic resonance spectroscopic identification of the Fe-S clusters in the SPASM domain-containing radical SAM enzyme PqqE. Biochemistry 58:5173–5187

    Article  CAS  PubMed  Google Scholar 

  31. Hagen WR, van den Berg WAM, van Dongen WMAM et al (1998) EPR spectroscopy of biological iron-sulfur clusters with spin-admixed S=3-2 ground states. J Chem Soc Faraday Trans 94:2969–2973

    Article  CAS  Google Scholar 

  32. Lindahl PA, Day EP, Kent TA et al (1985) Moessbauer, EPR, and magnetization studies of the Azotobacter vinelandii iron protein. Evidence for a [4-iron-4-sulfur]1+ cluster with spin S = 3/2. J Biol Chem 260:11160–11173

    Article  CAS  PubMed  Google Scholar 

  33. Conover RC, Kowal AT, Fu WG et al (1990) Spectroscopic characterization of the novel iron-sulfur cluster in Pyrococcus furiosus ferredoxin. J Biol Chem 265:8533–8541

    Article  CAS  PubMed  Google Scholar 

  34. Rothery RA, Bertero MG, Cammack R et al (2004) The catalytic subunit of Escherichia coli nitrate reductase a contains a novel [4Fe-4S] cluster with a high-spin ground state. Biochemistry 43:5324–5333

    Article  CAS  PubMed  Google Scholar 

  35. Angove HC, Yoo SJ, Burgess BK et al (1997) Mössbauer and EPR evidence for an all-ferrous Fe4S4 cluster with S = 4 in the Fe protein of Nitrogenase. J Am Chem Soc 119:8730–8731

    Article  CAS  Google Scholar 

  36. Eisenstein RS, Kennedy MC, Beinert H (1998) The iron responsive element (IRE), the iron regulatory protein (IRP), and cytosolic aconitase: posttranscriptional regulation of mammalian iron metabolism. Chapman & Hall, London, pp 157–216

    Google Scholar 

  37. Crack JC, Green J, Thomson AJ et al (2014) Iron–sulfur clusters as biological sensors: the chemistry of reactions with molecular oxygen and nitric oxide. Acc Chem Res 47:3196–3205

    Article  CAS  PubMed  Google Scholar 

  38. Moura JJG, Moura I, Kent TA et al (1982) Interconversions of [3Fe-3S] and [4Fe-4S] clusters. Moessbauer and electron paramagnetic resonance studies of Desulfovibrio gigas ferredoxin II. J Biol Chem 257:6259–6267

    Article  CAS  PubMed  Google Scholar 

  39. Kent TA, Huynh BH, Munck E (1980) Iron-sulfur proteins—spin-coupling model for 3-iron clusters. Proc Natl Acad Sci U S A 77:6574–6576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fan C, Houseman ALP, Doan P et al (1993) Conformational distribution in protein-bound [3Fe-4S]+ clusters: CW and pulsed EPR and iron-57 ENDOR of D. gigas hydrogenase. J Phys Chem 97:3017–3021

    Article  CAS  Google Scholar 

  41. Duff JLC, Breton JLJ, Butt JN et al (1996) Novel redox chemistry of [3Fe−4S] clusters: electrochemical characterization of the all-Fe(II) form of the [3Fe−4S] cluster generated reversibly in various proteins and its spectroscopic investigation in Sulfolobus acidocaldarius ferredoxin. J Am Chem Soc 118:8593–8603

    Article  CAS  Google Scholar 

  42. Hearshen DO, Hagen WR, Sands RH et al (1986) An analysis of g strain in the EPR of two [2Fe-2S] ferredoxins. Evidence for a protein rigidity model. J Magn Reson 69:440–459

    CAS  Google Scholar 

  43. Lieder KW, Booker S, Ruzicka FJ et al (1998) S-Adenosylmethionine-dependent reduction of lysine 2,3-aminomutase and observation of the catalytically functional iron-sulfur centers by electron paramagnetic resonance. Biochemistry 37:2578–2585

    Article  CAS  PubMed  Google Scholar 

  44. Englander SW, Calhoun DB, Englander JJ (1987) Biochemistry without oxygen. Anal Biochem 161:300–306

    Article  CAS  PubMed  Google Scholar 

  45. Eaton GR, Eaton SS, Barr DP et al (2010) Quantitative EPR. Springer, New York

    Book  Google Scholar 

  46. Petasis DT, Hendrich MP (2015) Chapter eight - quantitative interpretation of multifrequency multimode EPR spectra of metal containing proteins, enzymes, and biomimetic complexes. In: Qin PZ, Warncke K (eds) Methods enzymol. Academic Press, Cambridge, Massachusetts, pp 171–208

    Google Scholar 

  47. Hanson GR, Gates KE, Noble CJ et al (2004) XSophe-Sophe-XeprView®. A computer simulation software suite (v. 1.1.3) for the analysis of continuous wave EPR spectra. J Inorg Biochem 98:903–916

    Article  CAS  PubMed  Google Scholar 

  48. Stoll S (2015) Chapter six - CW-EPR spectral simulations: solid state. In: Qin PZ, Warncke K (eds) Methods enzymol. Academic Press, Cambridge, Massachusetts, pp 121–142

    Google Scholar 

  49. Stoll S, Schweiger A (2006) EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J Magn Reson 178:42–55

    Article  CAS  PubMed  Google Scholar 

  50. Rupp H, Cammack R, Rao KK et al (1978) Electron-spin relaxation of iron-sulfur proteins studied by microwave-power saturation. Biochim Biophys Acta 537:255–269

    Article  CAS  PubMed  Google Scholar 

  51. Beardwood P, Gibson JF, Bertrand P et al (1983) Temperature dependence of the electronic spin-lattice relaxation time in a 2-iron-2-Sulphur model complex. Biochim Biophys Acta 742:426–433

    Article  CAS  PubMed  Google Scholar 

  52. Gayda JP, Bertrand P, Deville A et al (1979) Temperature dependence of the electronic spin-lattice relaxation time in a 2-iron-2-sulfur protein. Biochim Biophys Acta 581:15–26

    Article  CAS  PubMed  Google Scholar 

  53. Yakovlev G, Reda T, Hirst J (2007) Reevaluating the relationship between EPR spectra and enzyme structure for the iron-sulfur clusters in NADH:quinone oxidoreductase. Proc Natl Acad Sci U S A 104:12720–12725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dinis P, Suess DLM, Fox SJ et al (2015) X-ray crystallographic and EPR spectroscopic analysis of HydG, a maturase in FeFe -hydrogenase H-cluster assembly. Proc Natl Acad Sci U S A 112:1362–1367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Suess DLM, Britt RD (2015) EPR spectroscopic studies of FeFe -hydrogenase maturation. Top Catal 58:699–707

    Article  CAS  Google Scholar 

  56. Lubitz W, Ogata H, Rudiger O et al (2014) Hydrogenases Chem Rev 114:4081–4148

    Article  CAS  PubMed  Google Scholar 

  57. Danyal K, Yang Z-Y, Seefeldt LC (2011) Electron paramagnetic resonance spectroscopy. Methods Mol Biol 766:191–205

    Article  CAS  PubMed  Google Scholar 

  58. Davis LC, Henzl MT, Burris RH et al (1979) Iron-sulfur clusters in the molybdenum-iron protein component of nitrogenase. Electron paramagnetic resonance of the carbon monoxide inhibited state. Biochemistry 18:4860–4869

    Article  CAS  PubMed  Google Scholar 

  59. Rupnik K, Hu Y, Lee CC et al (2012) P+ state of Nitrogenase P-cluster exhibits electronic structure of a [Fe4S4]+ cluster. J Am Chem Soc 134:13749–13754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wiig JA, Hu Y, Ribbe MW (2011) NifEN-B complex of Azotobacter vinelandii is fully functional in nitrogenase FeMo cofactor assembly. Proc Natl Acad Sci U S A 108(8623–8627):S8623/8621–S8623/8622

    Google Scholar 

  61. Moebius K, Lubitz W, Cox N et al (2018) Biomolecular EPR meets NMR at high magnetic fields. Magnetochemistry 4:50

    Article  CAS  Google Scholar 

  62. Beinert H, Holm RH, Munck E (1997) Iron-sulfur clusters: nature's modular, multipurpose structures. Science 277:653–659

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Troy A. Stich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Stich, T.A. (2021). Characterization of Paramagnetic Iron-Sulfur Clusters Using Electron Paramagnetic Resonance Spectroscopy. In: Dos Santos, P.C. (eds) Fe-S Proteins. Methods in Molecular Biology, vol 2353. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1605-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1605-5_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1604-8

  • Online ISBN: 978-1-0716-1605-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics