Skip to main content

CRISPR/Cas9 Genome Engineering in Human Pluripotent Stem Cells for Modeling of Neurological Disorders

  • Protocol
  • First Online:
Neural Reprogramming

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2352))

Abstract

Recent advances in genome editing have brought new hopes for personalized and precision medicine but have also dramatically facilitated disease modeling studies. Combined with reprogramming approaches, stem cells and differentiation toward neural lineages, genome engineering holds great potential for regenerative approaches and to model neurological disorders. The use of patient-specific induced pluripotent stem cells combined with neural differentiation allows studying the effect of specific mutations in different brain cells. New genome editing tools such as CRISPR/Cas9 represent a step further by facilitating the introduction or correction of specific mutations within the same cell line, thus eliminating variability due to differences in the genetic background. Here, we present a step-by-step protocol from design to generation of human pluripotent stem cell lines with specific mutations introduced or corrected with CRISPR/Cas9 gene editing that can be used in combination with transcription factor-based protocols to dissect underlying mechanisms of neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93(3):1156–1160

    Article  CAS  Google Scholar 

  2. Christian M et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186(2):757–761

    Article  CAS  Google Scholar 

  3. Ishino Y et al (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169(12):5429–5433

    Article  CAS  Google Scholar 

  4. Hermans PW et al (1991) Insertion element IS987 from Mycobacterium bovis BCG IS located in a hot-spot integration region for insertion elements in Mycobacterium tuberculosis complex strains. Infect Immun 59(8):2695–2705

    Article  CAS  Google Scholar 

  5. Mojica FJ, Juez G, Rodriguez-Valera F (1993) Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Mol Microbiol 9(3):613–621

    Article  CAS  Google Scholar 

  6. Jansen R et al (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43(6):1565–1575

    Article  CAS  Google Scholar 

  7. Bolotin A et al (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151(Pt 8):2551–2561

    Article  CAS  Google Scholar 

  8. Mojica FJ et al (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60(2):174–182

    Article  CAS  Google Scholar 

  9. Pourcel C, Salvignol G, Vergnaud G (2005) CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151(Pt 3):653–663

    Article  CAS  Google Scholar 

  10. Barrangou R et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709–1712

    Article  CAS  Google Scholar 

  11. Jinek M et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  CAS  Google Scholar 

  12. Cong L et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823

    Article  CAS  Google Scholar 

  13. Paquet D et al (2016) Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533(7601):125–129

    Article  CAS  Google Scholar 

  14. Yang L et al (2013) Optimization of scarless human stem cell genome editing. Nucleic Acids Res 41(19):9049–9061

    Article  CAS  Google Scholar 

  15. Renaud JB et al (2016) Improved genome editing efficiency and flexibility using modified oligonucleotides with TALEN and CRISPR-Cas9 nucleases. Cell Rep 14(9):2263–2272

    Article  CAS  Google Scholar 

  16. Okamoto S et al (2019) Highly efficient genome editing for single-base substitutions using optimized ssODNs with Cas9-RNPs. Sci Rep 9(1):4811

    Article  Google Scholar 

  17. Ratz M et al (2015) CRISPR/Cas9-mediated endogenous protein tagging for RESOLFT super-resolution microscopy of living human cells. Sci Rep 5:9592

    Article  CAS  Google Scholar 

  18. Yang G, Huang X (2019) Methods and applications of CRISPR/Cas system for genome editing in stem cells. Cell Regen (Lond) 8(2):33–41

    Article  Google Scholar 

  19. Forrest MP et al (2017) Open chromatin profiling in hiPSC-derived neurons prioritizes functional noncoding psychiatric risk variants and highlights neurodevelopmental loci. Cell Stem Cell 21(3):305–318. e8

    Article  CAS  Google Scholar 

  20. Deneault E et al (2019) CNTN5(−)(/+)or EHMT2(−)(/+)human iPSC-derived neurons from individuals with autism develop hyperactive neuronal networks. Elife 8:e40092

    Article  Google Scholar 

  21. Lin YT et al (2018) APOE4 causes widespread molecular and cellular alterations associated with Alzheimer’s disease phenotypes in human iPSC-derived brain cell types. Neuron 98(6):1141–1154. e7

    Article  CAS  Google Scholar 

  22. Valdez C et al (2017) Progranulin-mediated deficiency of cathepsin D results in FTD and NCL-like phenotypes in neurons derived from FTD patients. Hum Mol Genet 26(24):4861–4872

    Article  CAS  Google Scholar 

  23. Canals I et al (2018) Rapid and efficient induction of functional astrocytes from human pluripotent stem cells. Nat Methods 15(9):693–696

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Ahlenius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Canals, I., Ahlenius, H. (2021). CRISPR/Cas9 Genome Engineering in Human Pluripotent Stem Cells for Modeling of Neurological Disorders. In: Ahlenius, H. (eds) Neural Reprogramming. Methods in Molecular Biology, vol 2352. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1601-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1601-7_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1600-0

  • Online ISBN: 978-1-0716-1601-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics