Skip to main content

Combining Cell Fate Reprogramming and Protein Engineering to Study Transcription Factor Functions

  • Protocol
  • First Online:
Neural Reprogramming

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2352))

Abstract

Gene expression regulation by transcription factors plays a central role in determining and maintaining cell fate during normal development as well as induced cell fate reprogramming. Induction of cell identity-determining gene regulatory networks by reprogramming factors that act as transcriptional activators is key to induce desired cell fates. Conversely, repression of unwanted genetic programs by transcriptional repressors is equally important to ensure cell fate fidelity. Here we describe engineering techniques to create fusion proteins that allow exploration of the major transcriptional contribution (activation or repression) of specific neuronal reprogramming factors during direct cell fate conversion. This method can be extended to every reprogramming regime to enable the functional categorization of any transcription factor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from €39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 139.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wapinski OL, Vierbuchen T, Qu K et al (2013) Hierarchical mechanisms for direct reprogramming of fibroblasts to neurons. Cell 155:621–635. https://doi.org/10.1016/j.cell.2013.09.028

    Article  CAS  PubMed  Google Scholar 

  2. Raposo AASF, Vasconcelos FF, Drechsel D et al (2015) Ascl1 coordinately regulates gene expression and the chromatin landscape during neurogenesis. Cell Rep 10:1544–1556. https://doi.org/10.1016/j.celrep.2015.02.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vierbuchen T, Ostermeier A, Pang ZP et al (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463:1035–1041. https://doi.org/10.1038/nature08797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mall M, Kareta MS, Chanda S et al (2017) Myt1l safeguards neuronal identity by actively repressing many non-neuronal fates. Nature 544:245–249. https://doi.org/10.1038/nature21722

    Article  CAS  PubMed  Google Scholar 

  5. Pogulisf RJ, Vallejo AN, Pease LR (1996) In vitro recombination and mutagenesis by overlap extension PCR. Methods Mol Biol 57:167–176

    Google Scholar 

  6. Adrian-Segarra JM, Weigel B, Mall M (2020) Isolation and neuronal reprogramming of mouse embryonic fibroblasts. Methods Mol Biol, xx–xx

    Google Scholar 

  7. Tsunemoto R, Lee S, Szűcs A et al (2018) Diverse reprogramming codes for neuronal identity. Nature 557:375–380. https://doi.org/10.1038/s41586-018-0103-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu Y, Yu C, Daley TP et al (2018) CRISPR activation screens systematically identify factors that drive neuronal fate and reprogramming. Cell Stem Cell 23:758–771.e8. https://doi.org/10.1016/j.stem.2018.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mall M, Wernig M (2017) The novel tool of cell reprogramming for applications in molecular medicine. J Mol Med 95:695–703. https://doi.org/10.1007/s00109-017-1550-4

    Article  CAS  PubMed  Google Scholar 

  10. Maglott DR, Katz KS, Sicotte H, Pruitt KD (2000) NCBI’s LocusLink and RefSeq. Nucleic Acids Res 28:126–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mitchell AL, Attwood TK, Babbitt PC et al (2019) InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res 47:D351–D360. https://doi.org/10.1093/nar/gky1100

    Article  CAS  PubMed  Google Scholar 

  12. Eichner J, Topf F, Dräger A et al (2013) TFpredict and SABINE: sequence-based prediction of structural and functional characteristics of transcription factors. PLoS One 8:e82238. https://doi.org/10.1371/journal.pone.0082238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Reeb J, Rost B (2019) Secondary structure prediction. In: Encyclopedia of bioinformatics and computational biology. Elsevier, Amsterdam, pp 488–496

    Chapter  Google Scholar 

  14. Deuschle U, Meyer WK, Thiesen HJ (1995) Tetracycline-reversible silencing of eukaryotic promoters. Mol Cell Biol 15:1907–1914. https://doi.org/10.1128/mcb.15.4.1907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vickers ER, Sharrocks AD (2002) The use of inducible engrailed fusion proteins to study the cellular functions of eukaryotic transcription factors. Methods 26:270–280. https://doi.org/10.1016/S1046-2023(02)00031-2

    Article  CAS  PubMed  Google Scholar 

  16. Seipel K, Georgiev O, Schaffner W (1992) Different activation domains stimulate transcription from remote (‘enhancer’) and proximal (‘promoter’) positions. EMBO J 11:4961–4968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Beerli RR, Segal DJ, Dreier B, Barbas CF (1998) Toward controlling gene expression at will: specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks. Proc Natl Acad Sci U S A 95:14628–14633. https://doi.org/10.1073/pnas.95.25.14628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen X, Zaro JL, Shen W-C (2013) Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev 65:1357–1369. https://doi.org/10.1016/j.addr.2012.09.039

    Article  CAS  PubMed  Google Scholar 

  19. Hopp TP, Prickett KS, Price VL et al (1988) A short polypeptide marker sequence useful for recombinant protein identification and purification. Bio/Technology 6:1204–1210. https://doi.org/10.1038/nbt1088-1204

    Article  CAS  Google Scholar 

  20. Kalderon D, Roberts BL, Richardson WD, Smith AE (1984) A short amino acid sequence able to specify nuclear location. Cell 39:499–509. https://doi.org/10.1016/0092-8674(84)90457-4

    Article  CAS  PubMed  Google Scholar 

  21. Gossen M, Freundlieb S, Bender G et al (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268:1766–1769. https://doi.org/10.1126/science.7792603

    Article  CAS  PubMed  Google Scholar 

  22. Park J, Throop AL, LaBaer J (2015) Site-specific recombinational cloning using gateway and in-fusion cloning schemes. Curr Protoc Mol Biol 110:3.20.1–3.2023. https://doi.org/10.1002/0471142727.mb0320s110

    Article  Google Scholar 

  23. Gibson DG, Young L, Chuang R-Y et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345. https://doi.org/10.1038/nmeth.1318

    Article  CAS  PubMed  Google Scholar 

  24. Li MZ, Elledge SJ (2007) Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods 4:251–256. https://doi.org/10.1038/nmeth1010

    Article  CAS  PubMed  Google Scholar 

  25. Zhu B, Cai G, Hall EO, Freeman GJ (2007) In-fusion assembly: seamless engineering of multidomain fusion proteins, modular vectors, and mutations. BioTechniques 43:354–359. https://doi.org/10.2144/000112536

    Article  CAS  PubMed  Google Scholar 

  26. Barbas CF, Burton DR, Scott JK, Silverman GJ (2007) Quantitation of DNA and RNA. CSH Protoc 2007:pdb.ip47

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from CellNetworks (EXC81), ERC StG No 804710, and the Hector Stiftung II gGmbH to MM and a Helmholtz International Graduate School Fellowship to BW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz Mall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Adrian-Segarra, J.M., Weigel, B., Mall, M. (2021). Combining Cell Fate Reprogramming and Protein Engineering to Study Transcription Factor Functions. In: Ahlenius, H. (eds) Neural Reprogramming. Methods in Molecular Biology, vol 2352. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1601-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1601-7_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1600-0

  • Online ISBN: 978-1-0716-1601-7

  • eBook Packages: Springer Protocols

Key words

Publish with us

Policies and ethics