Skip to main content

Illuminating Enhancer Transcription at Nucleotide Resolution with Native Elongating Transcript Sequencing (NET-Seq)

Part of the Methods in Molecular Biology book series (MIMB,volume 2351)

Abstract

Enhancers are transcribed by RNA polymerase II (Pol II). In order to study the regulation of enhancer transcription and its function in target gene control, methods are required that track genome transcription with high precision in vivo. Here, we provide step-by-step guidance for performing native elongating transcript sequencing (NET-Seq) in mammalian cells. NET-Seq allows quantitative measurements of transcription genome-wide, including enhancer transcription, with single-nucleotide and DNA strand resolution. The approach consists of capturing and efficiently converting the 3′-ends of the nascent RNA into a sequencing library followed by next-generation sequencing and computational data analysis. The protocol includes quality control measurements to monitor the success of the main steps. Following this protocol, a NET-Seq library is obtained within 5 days.

Keywords

  • Transcription
  • Nascent RNA
  • Enhancer
  • eRNA
  • RNA polymerase II
  • NET-Seq
  • Genome-wide
  • Library preparation
  • Next-generation sequencing

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-1597-3_3
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-1597-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kim T-K, Hemberg M, Gray JM et al (2010) Widespread transcription at neuronal activity-regulated enhancers. Nature 465:182–187

    CrossRef  CAS  Google Scholar 

  2. Li W, Notani D, Rosenfeld MG (2016) Enhancers as non-coding RNA transcription units: recent insights and future perspectives. Nat Rev Genet 17:207–223

    CrossRef  CAS  Google Scholar 

  3. Andersson R, Gebhard C, Miguel-Escalada I et al (2014) An atlas of active enhancers across human cell types and tissues. Nature 507:455–461

    CrossRef  CAS  Google Scholar 

  4. Lam MTY, Li W, Rosenfeld MG et al (2014) Enhancer RNAs and regulated transcriptional programs. Trends Biochem Sci 39:170–182

    CrossRef  CAS  Google Scholar 

  5. Chen H, Du G, Song X et al (2017) Non-coding transcripts from enhancers: new insights into enhancer activity and gene expression regulation. Genom Proteom Bioinformat 15:201–207

    CrossRef  Google Scholar 

  6. Schwalb B, Michel M, Zacher B et al (2016) TT-seq maps the human transient transcriptome. Science 352:1225–1228

    CrossRef  CAS  Google Scholar 

  7. Wissink EM, Vihervaara A, Tippens ND et al (2019) Nascent RNA analyses: tracking transcription and its regulation. Nat Rev Genet 20:705–723

    CrossRef  CAS  Google Scholar 

  8. Churchman LS, Weissman JS (2011) Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 469:368–373

    CrossRef  CAS  Google Scholar 

  9. Mayer A, di Iulio J, Maleri S et al (2015) Native elongating transcript sequencing reveals human transcriptional activity at nucleotide resolution. Cell 161:541–554

    CrossRef  CAS  Google Scholar 

  10. Nojima T, Gomes T, Grosso ARF et al (2015) Mammalian NET-Seq reveals genome-wide nascent transcription coupled to RNA processing. Cell 161:526–540

    CrossRef  CAS  Google Scholar 

  11. Zhu J, Liu M, Liu X et al (2018) RNA polymerase II activity revealed by GRO-seq and pNET-seq in Arabidopsis. Nat Plants 4:1112–1123

    CrossRef  CAS  Google Scholar 

  12. Kindgren P, Ivanov M, Marquardt S (2020) Native elongation transcript sequencing reveals temperature dependent dynamics of nascent RNAPII transcription in Arabidopsis. Nucleic Acids Res 48:2332–2347

    CrossRef  CAS  Google Scholar 

  13. Shetty A, Kallgren SP, Demel C et al (2017) Spt5 plays vital roles in the control of sense and antisense transcription elongation. Mol Cell 66:77–88.e5

    CrossRef  Google Scholar 

  14. Wery M, Gautier C, Descrimes M et al (2018) Native elongating transcript sequencing reveals global anti-correlation between sense and antisense nascent transcription in fission yeast. RNA 24:196–208

    CrossRef  CAS  Google Scholar 

  15. Larson MH, Mooney RA, Peters JM et al (2014) A pause sequence enriched at translation start sites drives transcription dynamics in vivo. Science 344:1042–1047

    CrossRef  CAS  Google Scholar 

  16. Vvedenskaya IO, Vahedian-Movahed H, Bird JG et al (2014) Interactions between RNA polymerase and the “core recognition element” counteract pausing. Science 344:1285–1289

    CrossRef  CAS  Google Scholar 

  17. Clarke AM, Engel KL, Giles KE et al (2018) NETSeq reveals heterogeneous nucleotide incorporation by RNA polymerase I. Proc Natl Acad Sci 115:E11633–E11641

    CrossRef  CAS  Google Scholar 

  18. Drexler HL, Choquet K, Churchman LS (2020) Splicing kinetics and coordination revealed by direct nascent RNA sequencing through nanopores. Mol Cell 77:985–998.e8

    CrossRef  Google Scholar 

  19. Mylonas C, Tessarz P (2019) NET-prism enables RNA polymerase-dedicated transcriptional interrogation at nucleotide resolution. RNA Biol 16:1156–1165

    CrossRef  Google Scholar 

  20. Hirabayashi S, Bhagat S, Matsuki Y et al (2019) NET-CAGE characterizes the dynamics and topology of human transcribed cis-regulatory elements. Nat Genet 51:1369–1379

    CrossRef  CAS  Google Scholar 

  21. Fischl H, Howe FS, Furger A, Mellor J (2017) Paf1 has distinct roles in transcription elongation and differential transcript fate. Mol Cell 65:685–698.e8

    CrossRef  Google Scholar 

  22. Imashimizu M, Takahashi H, Oshima T et al (2015) Visualizing translocation dynamics and nascent transcript errors in paused RNA polymerases in vivo. Genome Biol 16:98

    CrossRef  Google Scholar 

  23. Bernecky C, Herzog F, Baumeister W et al (2016) Structure of transcribing mammalian RNA polymerase II. Nature 529:551–554

    CrossRef  CAS  Google Scholar 

  24. Mayer A, Churchman LS (2017) A detailed protocol for subcellular RNA sequencing (subRNA-seq). Curr Protoc Mol Biol 120:4.29.1–4.29.18

    CrossRef  CAS  Google Scholar 

  25. Mayer A, Churchman LS (2016) Genome-wide profiling of RNA polymerase transcription at nucleotide resolution in human cells with native elongating transcript sequencing. Nat Protoc 11:813–833

    CrossRef  CAS  Google Scholar 

  26. Wuarin J, Schibler U (1994) Physical isolation of nascent RNA chains transcribed by RNA polymerase II: evidence for cotranscriptional splicing. Mol Cell Biol 14:7219–7225

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Pandya-Jones A (2011) Pre-mRNA splicing during transcription in the mammalian system. Wiley Interdiscip Rev RNA 2:700–717

    CrossRef  CAS  Google Scholar 

  28. Bhatt DM, Pandya-Jones A, Tong A-J et al (2012) Transcript dynamics of proinflammatory genes revealed by sequence analysis of subcellular RNA fractions. Cell 150:279–290

    CrossRef  CAS  Google Scholar 

  29. Brueckner F, Cramer P (2008) Structural basis of transcription inhibition by α-amanitin and implications for RNA polymerase II translocation. Nat Struct Mol Biol 15:811–818

    CrossRef  CAS  Google Scholar 

  30. Lindell TJ, Weinberg F, Morris PW et al (1970) Specific inhibition of nuclear RNA polymerase II by alpha-amanitin. Science 170:447–449

    CrossRef  CAS  Google Scholar 

  31. Cai H, Luse DS (1987) Transcription initiation by RNA polymerase II in vitro. Properties of preinitiation, initiation, and elongation complexes. J Biol Chem 262:298–304

    CrossRef  CAS  Google Scholar 

  32. Kireeva ML, Komissarova N, Waugh DS et al (2000) The 8-nucleotide-long RNA:DNA hybrid is a primary stability determinant of the RNA polymerase II elongation complex. J Biol Chem 275:6530–6536

    CrossRef  CAS  Google Scholar 

  33. Shah RN, Grzybowski AT, Cornett EM et al (2018) Examining the roles of H3K4 methylation states with systematically characterized antibodies. Mol Cell 72:162–177.e7

    CrossRef  Google Scholar 

Download references

Acknowledgments

We thank all members of the Mayer group for critical comments on the manuscript. This work was funded by the Max Planck Society (to A.M.) and the Deutsche Forschungsgemeinschaft (DFG, grant no. 418415292 to A.M. and the International Research Training Group (IRTG) 2403 to A.M. and M.A.). O.J. was supported by a 2017 FEBS Long-Term Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Mayer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Jasnovidova, O., Arnold, M., Mayer, A. (2021). Illuminating Enhancer Transcription at Nucleotide Resolution with Native Elongating Transcript Sequencing (NET-Seq) . In: Borggrefe, T., Giaimo, B.D. (eds) Enhancers and Promoters. Methods in Molecular Biology, vol 2351. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1597-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1597-3_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1596-6

  • Online ISBN: 978-1-0716-1597-3

  • eBook Packages: Springer Protocols