Skip to main content

Nanoparticles for In Vivo Lifetime Multiplexed Imaging

  • Protocol
  • First Online:
Multiplexed Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2350))

Abstract

Lifetime multiplexed imaging refers to the simultaneous labeling of different structures with fluorescent probes that present identical photoluminescence spectra and distinct fluorescence lifetimes. This technique allows extracting quantitative information from multichannel in vivo fluorescence imaging. In vivo lifetime multiplexed imaging requires fluorophores with excitation and emission bands in the near-infrared (NIR) and tunable fluorescence lifetimes, plus an imaging system capable of time-resolved image acquisition and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mansfield JR, Gossage KW, Hoyt CC, Levenson RM (2005) Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging. J Biomed Opt 10(4):041207

    Article  Google Scholar 

  2. Chan WCW, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13(1):40–46

    Article  CAS  Google Scholar 

  3. Zhu H, Fan J, Du J, Peng X (2016) Fluorescent probes for sensing and imaging within specific cellular organelles. Acc Chem Res 49(10):2115–2126

    Article  CAS  Google Scholar 

  4. Ettinger A, Wittmann T (2014) Fluorescence live cell imaging. In: Waters JC, Wittmann T (eds) Quantitative imaging in cell biology, Methods in cell biology, vol 123. Elsevier Academic Press Inc, San Diego, pp 77–94

    Chapter  Google Scholar 

  5. Hong G, Antaris AL, Dai H (2017) Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng 1:0010

    Article  CAS  Google Scholar 

  6. Smith AM, Mancini MC, Nie S (2009) Bioimaging: second window for in vivo imaging. Nat Nanotechnol 4(11):710–711

    Article  CAS  Google Scholar 

  7. Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19(4):316–317

    Article  CAS  Google Scholar 

  8. Hong G, Diao S, Chang J, Antaris AL, Chen C, Zhang B, Zhao S, Atochin DN, Huang PL, Andreasson KI, Kuo CJ, Dai H (2014) Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat Photonics 8:723

    Article  CAS  Google Scholar 

  9. del Rosal B, Villa I, Jaque D, Sanz-Rodríguez F (2016) In vivo autofluorescence in the biological windows: the role of pigmentation. J Biophotonics 9(10):1059–1067

    Article  Google Scholar 

  10. Villa I, Vedda A, Cantarelli I, Pedroni M, Piccinelli F, Bettinelli M, Speghini A, Quintanilla M, Vetrone F, Rocha U, Jacinto C, Carrasco E, Rodríguez F, Juarranz Á, del Rosal B, Ortgies D, Gonzalez P, Solé J, García D (2015) 1.3 μm emitting SrF2:Nd3+ nanoparticles for high contrast in vivo imaging in the second biological window. Nano Res 8(2):649–665

    Article  CAS  Google Scholar 

  11. Jacques SL (2013) Optical properties of biological tissues: a review. Phys Med Biol 58(11):R37–R61

    Article  Google Scholar 

  12. Bashkatov A, Genina E, Kochubey V, Tuchin V (2005) Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J Phys D Appl Phys 38(15):2543

    Article  CAS  Google Scholar 

  13. Ortgies DH, Tan M, Ximendes EC, del Rosal B, Hu J, Xu L, Wang X, Martín Rodríguez E, Jacinto C, Fernandez N, Chen G, Jaque D (2018) Lifetime-encoded infrared-emitting nanoparticles for in vivo multiplexed imaging. ACS Nano 12(5):4362–4368

    Article  CAS  Google Scholar 

  14. Fan Y, Wang P, Lu Y, Wang R, Zhou L, Zheng X, Li X, Piper JA, Zhang F (2018) Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat Nanotechnol 13:941–946

    Article  CAS  Google Scholar 

  15. Siegel J, Elson DS, Webb SE, Lee KB, Vlandas A, Gambaruto GL, Levêque-Fort S, Lever MJ, Tadrous PJ, Stamp GW (2003) Studying biological tissue with fluorescence lifetime imaging: microscopy, endoscopy, and complex decay profiles. Appl Opt 42(16):2995–3004

    Article  Google Scholar 

  16. Hildebrandt IJ, Su H, Weber WA (2008) Anesthesia and other considerations for in vivo imaging of small animals. ILAR J 49(1):17–26

    Article  CAS  Google Scholar 

  17. Lee KB, Siegel J, Webb S, Leveque-Fort S, Cole M, Jones R, Dowling K, Lever M, French P (2001) Application of the stretched exponential function to fluorescence lifetime imaging. Biophys J 81(3):1265–1274

    Article  CAS  Google Scholar 

  18. Jang C, Lee JH, Sahu A, Tae G (2015) The synergistic effect of folate and RGD dual ligand of nanographene oxide on tumor targeting and photothermal therapy in vivo. Nanoscale 7(44):18584–18594

    Article  CAS  Google Scholar 

  19. Bodunov EN, Danilov VV, Panfutova AS, Simoes Gamboa AL (2016) Room-temperature luminescence decay of colloidal semiconductor quantum dots: nonexponentiality revisited. Ann Phys 528(3–4):272–277

    Article  CAS  Google Scholar 

  20. Laherrere J, Sornette D (1998) Stretched exponential distributions in nature and economy:“fat tails” with characteristic scales. Eur Phys J B 2(4):525–539

    Article  CAS  Google Scholar 

  21. Lindsey C, Patterson G (1980) Detailed comparison of the Williams–Watts and Cole–Davidson functions. J Chem Phys 73(7):3348–3357

    Article  CAS  Google Scholar 

  22. Zheng X, Zhu X, Lu Y, Zhao J, Feng W, Jia G, Wang F, Li F, Jin D (2016) High-contrast visualization of upconversion luminescence in mice using time-gating approach. Anal Chem 88(7):3449–3454

    Article  CAS  Google Scholar 

  23. Dowling K, Dayel M, Lever M, French P, Hares J, Dymoke-Bradshaw A (1998) Fluorescence lifetime imaging with picosecond resolution for biomedical applications. Opt Lett 23(10):810–812

    Article  CAS  Google Scholar 

  24. Salihoglu O, Kakenov N, Balci O, Balci S, Kocabas C (2016) Graphene as a reversible and spectrally selective fluorescence quencher. Sci Rep 6:33911

    Article  CAS  Google Scholar 

  25. Lakowicz JR, Szmacinski H, Nowaczyk K, Berndt KW, Johnson M (1992) Fluorescence lifetime imaging. Anal Biochem 202(2):316–330

    Article  CAS  Google Scholar 

  26. Alcala JR, Gratton E, Prendergast F (1987) Fluorescence lifetime distributions in proteins. Biophys J 51(4):597–604

    Article  CAS  Google Scholar 

  27. Alcala JR (1994) The effect of harmonic conformational trajectories on protein fluorescence and lifetime distributions. J Chem Phys 101(6):4578–4584

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blanca del Rosal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ximendes, E., Martín Rodríguez, E., Ortgies, D.H., Tan, M., Chen, G., del Rosal, B. (2021). Nanoparticles for In Vivo Lifetime Multiplexed Imaging. In: Zamir, E. (eds) Multiplexed Imaging. Methods in Molecular Biology, vol 2350. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1593-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1593-5_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1592-8

  • Online ISBN: 978-1-0716-1593-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics